skip to main content


This content will become publicly available on July 26, 2025

Title: Leading role of Saharan dust on tropical cyclone rainfall in the Atlantic Basin

Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for individual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evidently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR, with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhancement to radiative suppression at high dust concentrations. The model also highlights meaningful correlations between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding its driving factors and physical mechanisms.

 
more » « less
Award ID(s):
2103714
PAR ID:
10530608
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
30
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a comprehensive approach to predicting short-term (for the upcoming 2 weeks) changes in estuarine dissolved oxygen concentrations via machine learning models that integrate historical water sampling, historical and upcoming 2-week meteorological data, and river discharge and discharge metrics. Dissolved oxygen is a critical indicator of ecosystem health, and this approach is implemented for the Neuse River Estuary, North Carolina, U.S.A., which has a long history of hypoxia-related habitat degradation. Through meticulous data preprocessing and feature selection, this research evaluates the predictions of dissolved oxygen concentrations by comparing a recurrent neural network with four other models, including a Multilayer Perceptron, Long Short-Term Memory, Gradient Boosting, and AutoKeras, through sensitivity experiments. The input predictors to our prediction models include water temperature, turbidity, chlorophyll-a, aggregated river discharge, and aggregated wind based on eight directions. By emphasizing the most impactful predictors, we streamlined the model-building processes and built a hindcast system from 2015 to 2019. We found that the recurrent neural network model was most effective in predicting the dissolved oxygen concentrations, with an R2 value of 0.99 at multiple stations. Different from our machine learning hindcast models that used observed upcoming meteorological and discharge data, an actual forecast system would use forecasted meteorological and discharge data. Therefore, an actual operational forecast may have lower accuracy than the hindcast, as determined by the accuracy of the predicted meteorological and discharge data. Nevertheless, our studies enhance our understanding of the factors influencing dissolved oxygen variability and set the basis for the implementation of a predictive tool for environmental monitoring and management. We also emphasized the importance of building station-specific models to improve the prediction results.

     
    more » « less
  2. Abstract

    In droplet-on-demand liquid metal jetting (DoD-LMJ) additive manufacturing, complex physical interactions govern the droplet characteristics, such as size, velocity, and shape. These droplet characteristics, in turn, determine the functional quality of the printed parts. Hence, to ensure repeatable and reliable part quality it is necessary to monitor and control the droplet characteristics. Existing approaches for in-situ monitoring of droplet behavior in DoD-LMJ rely on high-speed imaging sensors. The resulting high volume of droplet images acquired is computationally demanding to analyze and hinders real-time control of the process. To overcome this challenge, the objective of this work is to use time series data acquired from an in-process millimeter-wave sensor for predicting the size, velocity, and shape characteristics of droplets in DoD-LMJ process. As opposed to high-speed imaging, this sensor produces data-efficient time series signatures that allows rapid, real-time process monitoring. We devise machine learning models that use the millimeter-wave sensor data to predict the droplet characteristics. Specifically, we developed multilayer perceptron-based non-linear autoregressive models to predict the size and velocity of droplets. Likewise, a supervised machine learning model was trained to classify the droplet shape using the frequency spectrum information contained in the millimeter-wave sensor signatures. High-speed imaging data served as ground truth for model training and validation. These models captured the droplet characteristics with a statistical fidelity exceeding 90%, and vastly outperformed conventional statistical modeling approaches. Thus, this work achieves a practically viable sensing approach for real-time quality monitoring of the DoD-LMJ process, in lieu of the existing data-intensive image-based techniques.

     
    more » « less
  3. Abstract

    The interaction between T-cell receptors (TCRs) and peptides (epitopes) presented by major histocompatibility complex molecules (MHC) is fundamental to the immune response. Accurate prediction of TCR–epitope interactions is crucial for advancing the understanding of various diseases and their prevention and treatment. Existing methods primarily rely on sequence-based approaches, overlooking the inherent topology structure of TCR–epitope interaction networks. In this study, we present $GTE$, a novel heterogeneous Graph neural network model based on inductive learning to capture the topological structure between TCRs and Epitopes. Furthermore, we address the challenge of constructing negative samples within the graph by proposing a dynamic edge update strategy, enhancing model learning with the nonbinding TCR–epitope pairs. Additionally, to overcome data imbalance, we adapt the Deep AUC Maximization strategy to the graph domain. Extensive experiments are conducted on four public datasets to demonstrate the superiority of exploring underlying topological structures in predicting TCR–epitope interactions, illustrating the benefits of delving into complex molecular networks. The implementation code and data are available at https://github.com/uta-smile/GTE.

     
    more » « less
  4. Streamflow prediction is crucial for planning future developments and safety measures along river basins, especially in the face of changing climate patterns. In this study, we utilized monthly streamflow data from the United States Bureau of Reclamation and meteorological data (snow water equivalent, temperature, and precipitation) from the various weather monitoring stations of the Snow Telemetry Network within the Upper Colorado River Basin to forecast monthly streamflow at Lees Ferry, a specific location along the Colorado River in the basin. Four machine learning models—Random Forest Regression, Long short-term memory, Gated Recurrent Unit, and Seasonal AutoRegresive Integrated Moving Average—were trained using 30 years of monthly data (1991–2020), split into 80% for training (1991–2014) and 20% for testing (2015–2020). Initially, only historical streamflow data were used for predictions, followed by including meteorological factors to assess their impact on streamflow. Subsequently, sequence analysis was conducted to explore various input-output sequence window combinations. We then evaluated the influence of each factor on streamflow by testing all possible combinations to identify the optimal feature combination for prediction. Our results indicate that the Random Forest Regression model consistently outperformed others, especially after integrating all meteorological factors with historical streamflow data. The best performance was achieved with a 24-month look-back period to predict 12 months of streamflow, yielding a Root Mean Square Error of 2.25 and R-squared (R2) of 0.80. Finally, to assess model generalizability, we tested the best model at other locations—Greenwood Springs (Colorado River), Maybell (Yampa River), and Archuleta (San Juan) in the basin.

     
    more » « less
  5. Abstract

    Deaf children of hearing parents (DOH) are at risk for early language delays (ELD) due to environmental and etiological factors, compounding the previously reported higher incidence of ELD in deaf children of deaf parents (DOD) compared to the general population. Archival data from the online database of the Visual Communication and Sign Language Checklist yielded 147 ratings of DOH 3- to 5-year-old children whose parents reported American sign language (ASL) being used in the home at least equally to spoken language. Research goals included (1) examining the incidence of ELD in this cohort, (2) investigating differences in outcomes based on the scaling method used, (3) exploring patterns among the ratings of DOH children identified with ELD, (4) comparing the DOH outcomes to published DOD data, and (5) investigating differences between ratings and individual children. The DOH outcomes suggested an incidence of ELD twice that of the previous DOD sample, with a higher percentage of more severe delays. Even DOH children not identified with ELD demonstrated less well-developed ASL skills than their DOD peers. This emphasizes the need for ongoing monitoring of early ASL skills to allow for early identification of needs and adjustment of interventions to address ASL development.

     
    more » « less