skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A role for the local environment in driving species‐specific parasitism in a multi‐host parasite system
Abstract The extent and magnitude of parasitism often vary among closely related host species and across populations within species. Determining the ecological basis for this species and population‐level variation in parasitism is critical for understanding infection dynamics in multi‐host–parasite systems. To investigate such ecological underpinnings of variation in parasitism, we studiedEnallagmadamselfly host species and their water mite (Arrenurusspp.) ectoparasites in lakes.We first evaluated how host identity and density could shape parasitism. To test the effects of con‐ and heterospecific host density on parasitism, we used a field experiment withEnallagma basidensandE. signatum. We found that parasitism did not vary with con‐ or heterospecific density and was determined by host identity alone, with no spillover effects.We also evaluated the potential role of local adaptation and resource availability in shaping parasitism. To do so, we usedE. signatumin a reciprocal transplant experiment crossed with a prey resource‐level manipulation. This experiment revealed that parasitism declined sharply for one host population in its non‐local lake, but not the other source population, with no effects of prey levels. This asymmetry implies that damselflies express enhanced defences against parasitism that are neither population‐specific nor dependent on resource abundance, or that mites developed heightened local host specificity.The results of multivariate modeling from an observational study generally supported these experimental findings: neither host density nor resource abundance strongly explained among‐population variation in parasitism. Instead, local abiotic conditions (pH) had the strongest relationship with parasitism, with minimal associations with predator density, temperature and a measure of immune function.Collectively, our findings suggest a crucial role for the local environment in shaping host–parasite interactions within multi‐host–parasite systems. More generally, these results show that research at the intersection of community ecology and disease ecology is critical for understanding host–parasite dynamics within natural communities.  more » « less
Award ID(s):
1748945
PAR ID:
10443946
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Freshwater Biology
Volume:
67
Issue:
9
ISSN:
0046-5070
Page Range / eLocation ID:
p. 1571-1583
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend. 
    more » « less
  2. Abstract Understanding parasite transmission in communities requires knowledge of each species' capacity to support transmission. This property, ‘competence’, is a critical currency for modelling transmission under community change and for testing diversity–disease theory. Despite the central role of competence in disease ecology, we lack a clear understanding of the factors that generate competence and drive its variation.We developed novel conceptual and quantitative approaches to systematically quantify competence for a multi‐host, multi‐parasite community. We applied our framework to an extensive dataset: five amphibian host species exposed to four parasitic trematode species across five ecologically realistic exposure doses. Together, this experimental design captured 20 host–parasite interactions while integrating important information on variation in parasite exposure. Using experimental infection assays, we measured multiple components of the infection process and combined them to produce competence estimates for each interaction.With directly estimated competence values, we asked which components of the infection process best explained variation in competence: barrier resistance (the initial fraction of administered parasites blocked from infecting a host), internal clearance (the fraction of established parasites lost over time) or pre‐transmission mortality (the probability of host death prior to transmission). We found that variation in competence among the 20 interactions was best explained by differences in barrier resistance and pre‐transmission mortality, underscoring the importance of host resistance and parasite pathogenicity in shaping competence.We also produced dose‐integrated estimates of competence that incorporated natural variation in exposure to address questions on the basis and extent of variation in competence. We found strong signals that host species identity shaped competence variation (as opposed to parasite species identity). While variation in infection outcomes across hosts, parasites, individuals and doses was considerable, individual heterogeneity was limited compared to among‐species differences. This finding highlights the robustness of our competence estimates and suggests that species‐level values may be strong predictors for community‐level transmission in natural systems.Competence emerges from distinct underlying processes and can have strong species‐level characteristics; thus, this property has great potential for linking mechanisms of infection to epidemiological patterns. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract Conspecific plant density and heterospecific frequency are key drivers of herbivore damage. However, most studies have investigated their effects separately and for single (rather than multiple) focal plant species.We conducted an experiment involving three tree species, namely:Cordia dodecandra(Boraginaceae),Manilkara zapota(Zapotaceae), andPiscidia piscipula(Fabaceae). We manipulated understory densities ofM. zapotaandC. dodecandra(focal species) and their frequency relative toP. piscipula.Three months after planting, we surveyed insect leaf chewer and sucking damage on the former two. Because these species are attacked by different herbivores, we predicted a negative effect of heterospecific frequency on herbivory.Density and frequency varied in the direction and function of their effects on herbivory depending on the plant species and attacking herbivore. As expected,Piscidia piscipulafrequency had a negative linear effect onM. zapotaleaf‐chewer damage, whereas conspecific density did not affect chewer damage on this species. In contrast, density and frequency had non‐linear effects onC. dodecandrachewer damage, namely positive (hump‐shaped) and negative (U‐shaped) relationships, respectively. In addition, density and frequency had positive linear effects onC. dondecandradamage by leafhoppers.These findings call for more work jointly assessing plant inter‐specific variation in density‐ and frequency‐dependent variation in herbivory and its underlying drivers. 
    more » « less
  4. Abstract Co‐parasitism is ubiquitous and has important consequences for the ecology and evolution of wild host populations. Studies of parasite co‐infections remain limited in scope, with few experimental tests of the fitness consequences of multiple parasites, especially in natural populations.We measured the separate and combined effects ofPhilornis seguyinest flies and shiny cowbirdsMolothrus bonariensison the fitness of a shared host, the chalk‐browed mockingbird (Mimus saturninus) in Argentina.Using a two‐factor experimental approach, we manipulated the presence of nest flies and cowbirds in mockingbird nests and assessed their effects on mockingbird haemoglobin levels, begging and provisioning rates, body size, and fledging success. We also monitored rates of nest predation in relation to parasitism by flies and cowbirds.Nest flies reduced the haemoglobin concentration, body size, and fledging success of mockingbirds, likely because mockingbirds did not compensate for parasitism by begging more or feeding their nestlings more. Cowbirds also reduced the fledging success of mockingbirds, even though they had no detectable effect on haemoglobin or body size. Nests with cowbirds, which beg more than mockingbirds, attracted more nest predators. There was no significant interaction between the effects of flies and cowbirds on any component of mockingbird fitness. The combined effects of nest flies and cowbirds were strictly additive.In summary, we show that nest flies and cowbirds both reduce host fitness, but do not have interactive effects in co‐parasitized nests. Our results further suggest that predators exacerbate the effects of nest flies and cowbirds on their hosts. Our study shows that the fitness consequences of co‐parasitism are complex, especially in the context of community‐level interactions. 
    more » « less
  5. Abstract Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel. 
    more » « less