Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12
Sub-wavelength diffractive optics, commonly known as meta-optics, present a complex numerical simulation challenge, due to their multi-scale nature. The behavior of constituent sub-wavelength scatterers, or meta-atoms, needs to be modeled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modeled using ray/ Fourier optics. Most simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms is neglected. Here we introduce a physics-informed neural network, coupled with the overlapping boundary method, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to 53%) of the inverse-designed meta-lens. Our reported method can design large aperture ( ~ 104 − 105
- Award ID(s):
- 2120774
- PAR ID:
- 10444026
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Engineering
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2731-3395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ m). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging. -
A broad range of imaging and sensing technologies in the infrared require large field-of-view (FoV) operation. To achieve this, traditional refractive systems often employ multiple elements to compensate for aberrations, which leads to excess size, weight, and cost. For many applications, including night vision eye-wear, air-borne surveillance, and autonomous navigation for unmanned aerial vehicles, size and weight are highly constrained. Sub-wavelength diffractive optics, also known as meta-optics, can dramatically reduce the size, weight, and cost of these imaging systems, as meta-optics are significantly thinner and lighter than traditional refractive lenses. Here, we demonstrate 80° FoV thermal imaging in the long-wavelength infrared regime (8–12 µm) using an all-silicon meta-optic with an entrance aperture and lens focal length of 1 cm.more » « less
-
Optomechanical crystals provide coupling between phonons and photons by confining them to commensurate wavelength-scale dimensions. We present a new concept for designing optomechanical crystals capable of achieving unprecedented coupling rates by confining optical and mechanical waves to deep sub-wavelength dimensions. Our design is based on a dielectric bowtie unit cell with an effective optical/mechanical mode volume of 7.6 × 10−3(
λ /n Si)3/. We present results from numerical modeling, indicating a single-photon optomechanical coupling of 2.2 MHz with experimentally viable parameters. Monte Carlo simulations are used to demonstrate the design’s robustness against fabrication disorder. -
We report a high-finesse bow-tie cavity designed for atomic physics experiments with Rydberg atom arrays. The cavity has a finesse of 51,000 and a waist of 7.1
μ m at the cesium D2 line (852 nm). With these parameters, the cavity is expected to induce strong coupling between a single atom and a single photon, corresponding to a cooperativity per traveling mode of 35 at the cavity waist. To trap and image atoms, the cavity setup utilizes two in-vacuum aspheric lenses with a numerical aperture (NA ) of 0.35 and is capable of housingNA = 0.5 microscope objectives. In addition, the large atom-mirror distance (cm) provides good optical access and minimizes stray electric fields at the position of the atoms. This cavity setup can operate in tandem with a Rydberg array platform, creating a fully connected system for quantum simulation and computation. -
Metasurfaces are arrays of sub-wavelength spaced nanostructures, which can be designed to control the many degrees-of-freedom of light on an unprecedented scale. In this work, we design meta-gratings where the diffraction orders can perform general, arbitrarily specified, polarization transformation without any reliance on conventional polarization components, such as waveplates and polarizers. We use matrix Fourier optics to design our devices and introduce a novel approach for their optimization. We implement the designs using form-birefringent metasurfaces and quantify their behavior – retardance and diattenuation. Our work is of importance in applications, such as polarization abberation correction in imaging systems, and in experiments requiring novel and compact polarization detection and control.