skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Legacy of EM Algorithms
Summary Nan Laird has an enormous and growing impact on computational statistics. Her paper with Dempster and Rubin on the expectation‐maximisation (EM) algorithm is the second most cited paper in statistics. Her papers and book on longitudinal modelling are nearly as impressive. In this brief survey, we revisit the derivation of some of her most useful algorithms from the perspective of the minorisation‐maximisation (MM) principle. The MM principle generalises the EM principle and frees it from the shackles of missing data and conditional expectations. Instead, the focus shifts to the construction of surrogate functions via standard mathematical inequalities. The MM principle can deliver a classical EM algorithm with less fuss or an entirely new algorithm with a faster rate of convergence. In any case, the MM principle enriches our understanding of the EM principle and suggests new algorithms of considerable potential in high‐dimensional settings where standard algorithms such as Newton's method and Fisher scoring falter.  more » « less
Award ID(s):
2205441 2054253
PAR ID:
10444118
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
International Statistical Review
Volume:
90
Issue:
S1
ISSN:
0306-7734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evans, Robin J.; Shpitser, Ilya (Ed.)
    Most existing approaches of differentially private (DP) machine learning focus on private training. Despite its many advantages, private training lacks the flexibility in adapting to incremental changes to the training dataset such as deletion requests from exercising GDPR’s right to be forgotten. We revisit a long-forgotten alternative, known as private prediction, and propose a new algorithm named Individual Kernelized Nearest Neighbor (Ind-KNN). Ind-KNN is easily updatable over dataset changes and it allows precise control of the Rényi DP at an individual user level — a user’s privacy loss is measured by the exact amount of her contribution to predictions; and a user is removed if her prescribed privacy budget runs out. Our results show that Ind-KNN consistently improves the accuracy over existing private prediction methods for a wide range of epsilon on four vision and language tasks. We also illustrate several cases under which Ind-KNN is preferable over private training with NoisySGD. 
    more » « less
  2. The expectation-maximization (EM) algorithm and its variants are widely used in statistics. In high-dimensional mixture linear regression, the model is assumed to be a finite mixture of linear regression and the number of predictors is much larger than the sample size. The standard EM algorithm, which attempts to find the maximum likelihood estimator, becomes infeasible for such model. We devise a group lasso penalized EM algorithm and study its statistical properties. Existing theoretical results of regularized EM algorithms often rely on dividing the sample into many independent batches and employing a fresh batch of sample in each iteration of the algorithm. Our algorithm and theoretical analysis do not require sample-splitting, and can be extended to multivariate response cases. The proposed methods also have encouraging performances in numerical studies. 
    more » « less
  3. Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE, including the EM algorithm and gradient descent, are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating parameters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines. 
    more » « less
  4. Mixture-of-Experts (MoE) is a widely popular model for ensemble learning and is a basic building block of highly successful modern neural networks as well as a component in Gated Recurrent Units (GRU) and Attention networks. However, present algorithms for learning MoE, including the EM algorithm and gradient descent, are known to get stuck in local optima. From a theoretical viewpoint, finding an efficient and provably consistent algorithm to learn the parameters remains a long standing open problem for more than two decades. In this paper, we introduce the first algorithm that learns the true parameters of a MoE model for a wide class of non-linearities with global consistency guarantees. While existing algorithms jointly or iteratively estimate the expert parameters and the gating parameters in the MoE, we propose a novel algorithm that breaks the deadlock and can directly estimate the expert parameters by sensing its echo in a carefully designed cross-moment tensor between the inputs and the output. Once the experts are known, the recovery of gating parameters still requires an EM algorithm; however, we show that the EM algorithm for this simplified problem, unlike the joint EM algorithm, converges to the true parameters. We empirically validate our algorithm on both the synthetic and real data sets in a variety of settings, and show superior performance to standard baselines. 
    more » « less
  5. The data deluge comes with high demands for data labeling. Crowdsourcing (or, more generally, ensemble learning) techniques aim to produce accurate labels via integrating noisy, non-expert labeling from annotators. The classic Dawid-Skene estimator and its accompanying expectation maximization (EM) algorithm have been widely used, but the theoretical properties are not fully understood. Tensor methods were proposed to guarantee identification of the Dawid-Skene model, but the sample complexity is a hurdle for applying such approaches---since the tensor methods hinge on the availability of third-order statistics that are hard to reliably estimate given limited data. In this paper, we propose a framework using pairwise co-occurrences of the annotator responses, which naturally admits lower sample complexity. We show that the approach can identify the Dawid-Skene model under realistic conditions. We propose an algebraic algorithm reminiscent of convex geometry-based structured matrix factorization to solve the model identification problem efficiently, and an identifiability-enhanced algorithm for handling more challenging and critical scenarios. Experiments show that the proposed algorithms outperform the state-of-art algorithms under a variety of scenarios. 
    more » « less