skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Verification of Substorm Onset From Intruding Flow Channels With High‐Resolution SuperDARN Radar Flow Maps

Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset.

more » « less
Award ID(s):
1952926 2055192 1907698 2331593
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flow bursts are a major component of transport within the plasma sheet and auroral oval (where they are referred to as flow channels), and lead to a variety of geomagnetic disturbances as they approach the inner plasma sheet (equatorward portion of the auroral oval). However, their two-dimensional structure as they approach the inner plasma sheet has received only limited attention. We have examined this structure using both the Rice Convection Model (RCM) and ground-based radar and all sky imager observations. As a result of the energy dependent magnetic drift, the low entropy plasma of a flow burst spreads azimuthally within the inner plasma sheet yielding specific predictions of subauroral polarization stream (SAPS) and dawnside auroral polarization stream (DAPS) enhancements that are related to the field-aligned currents associated with the flow channel. Flow channels approximately centered between the dawn and dusk large-scale convection cells are predicted to give significant enhancements of both SAPS and DAPS, whereas flow channel further toward the dusk (dawn) convection cell show a far more significant enhancement of SAPS (DAPS) than for DAPS (SAPS). We present observations for cases having good coverage of flow channels as they approach the equatorward portion of the auroral oval and find very good qualitative agreement with the above RCM predictions, including the predicted differences with respect to flow burst location. Despite there being an infinite variety of flow channels’ plasma parameters and of background plasma sheet and auroral oval conditions, the observations show the general trends predicted by the RCM simulations with the idealized parameters. This supports that RCM predictions of the azimuthal spread of a low-entropy plasma sheet plasma and its associated FAC and flow responses give a realistic physical description of the structure of plasma sheet flow bursts (auroral oval flow channels) as they reach the inner plasma sheet (near the equatorward edge of the auroral oval). 
    more » « less
  2. Abstract

    Following substorm auroral onset, the active aurora region usually expands poleward toward the poleward auroral boundary. Such poleward expansion is often associated with a bulge region that expands westward and forms the westward travelling surge. In this study, we show all‐sky imager and Poker Flat Advanced Modular Incoherent Scatter Radar observations of two surge events to investigate the relationship between the surge and ionospheric flows that likely have polar cap origin. For both events, we observe auroral streamers, with an adjacent flow channel consisting of decreased density and low electron temperature plasma flowing equatorward. This flow channel appears to impinge and lead/feed surge formation, and to stay connected to the surge as it moves westward. Also, for both events, streamer observations indicate that, following initial surge development, similar flows led to explosive surge enhancements. The observation that the streamers are connected to the auroral polar boundary and that the flow channels consisted of low density, low electron temperature plasma suggests the possibility that the impinging plasma came from the polar cap. For both events, the altitude variations of F region plasma within the surges are related with aurora emission and the poleward/equatorward flow, and the surges develop strong auroral streamers that initiate along the poleward auroral boundary when contacted with the flow. These results suggest that the flow of polar cap origin, which maps to underlying processes in the magnetotail, may play a crucial role in auroral surges by feeding low entropy plasma into surge initiation and development, and also playing an important role in the dynamics within a surge.

    more » « less
  3. Abstract

    We investigate the relation of fast flows at the inner edge of the plasma sheet to the onset of auroral expansion. Recent work suggests that nearly all expansions are an instability triggered by an auroral streamer from far out in the magnetotail. We investigate an 8‐hr interval of activity on 14 March 2008 using ground magnetometer and all‐sky camera data to determine the onset times of six substorm expansions. We compare these times with Time History of Events and Macroscale Interactions during Substorms observations of plasma flow and magnetic field. We show that every expansion followed the arrival of a fast flow and dipolarization event at the inner edge of the plasma sheet. To relate the aurora to flows, we develop procedures for removing fixed lights, the moving Moon and its reflection, and contamination due to scattered moonlight. We scan movies of enhanced images for auroral streamers. Three onsets were tentatively associated with streamers. For two, the apparent source was very close to the growth phase arc mapping close to Earth. For one, an onset occurred in the recovery phase of an earlier substorm after a double oval had formed. For this one, the end of an N‐S streamer stopped about 2° north of the breakup arc. For the remaining three expansions, no streamers were associated with the onsets. Most substorms exhibit N‐S streamers in the recovery phase. These usually cannot be associated with fast flows. Either fast flows in the growth phase do not produce streamers or they make streamers that require significant image enhancement.

    more » « less
  4. Abstract

    In the present study we examine three substorm events, Events 1–3, focusing on the spatio‐temporal development of auroral electrojets (AEJs) before auroral breakup. In Events 1 and 2, auroral breakup was preceded by the equatorward motion of an auroral form, and the ground magnetic field changed northward and southward in the west and east of the expected equatorward flow, respectively. Provided that these magnetic disturbances were caused by local ionospheric Hall currents, this feature suggests that the equatorward flow turned both eastward and westward as it reached the equatorward part of the auroral oval. The auroral breakup took place at the eastward‐turning and westward‐turning branches in Events 1 and 2, respectively, and after the auroral breakup, the westward AEJ enhanced only on the same side of the flow demarcation meridian. The zonal flow divergence is considered as an ionospheric manifestation of the braking of an earthward flow burst in the near‐Earth plasma sheet and subsequent dawnward and duskward turning. Therefore, in Events 1 and 2, the auroral breakup presumably mapped to the dawnward and duskward flow branches, respectively. Moreover, for Event 3, we do not find any pre‐onset auroral or magnetic features that can be associated with an equatorward flow. These findings suggest that the braking of a pre‐onset earthward flow burst itself is not the direct cause of substorm onset, and therefore, the wedge current system that forms at substorm onset is distinct from the one that is considered to form as a consequence of the flow braking.

    more » « less
  5. Abstract

    This paper addresses the question of the contribution of azimuthally localized flow channels and magnetic field dipolarizations embedded in them in the global dipolarization of the inner magnetosphere during substorms. We employ the high‐resolution Lyon‐Fedder‐Mobarry global magnetosphere magnetohydrodynamic model and simulate an isolated substorm event, which was observed by the geostationary satellites and by the Magnetospheric Multiscale spacecraft. The results of our simulations reveal that plasma sheet flow channels (bursty bulk flows, BBFs) and elementary dipolarizations (dipolarization fronts, DFs) occur in the growth phase of the substorm but are rare and do not penetrate to the geosynchronous orbit. The substorm onset is characterized by an abrupt increase in the occurrence and intensity of BBFs/DFs, which penetrate well earthward of the geosynchronous orbit during the expansion phase. These azimuthally localized structures are solely responsible for the global (in terms of the magnetic local time) dipolarization of the inner magnetosphere toward the end of the substorm expansion. Comparison with the geostationary satellites and Magnetospheric Multiscale data shows that the properties of the BBFs/DFs in the simulation are similar to those observed, which gives credence to the above results. Additionally, the simulation reveals many previously observed signatures of BBFs and DFs, including overshoots and oscillations around their equilibrium position, strong rebounds and vortical tailward flows, and the corresponding plasma sheet expansion and thinning.

    more » « less