Artificial Neural Networks (ANNs) are currently being used as function approximators in many state-of-the-art Reinforcement Learning (RL) algorithms. Spiking Neural Networks (SNNs) have been shown to drastically reduce the energy consumption of ANNs by encoding information in sparse temporal binary spike streams, hence emulating the communication mechanism of biological neurons. Due to their low energy consumption, SNNs are considered to be important candidates as co-processors to be implemented in mobile devices. In this work, the use of SNNs as stochastic policies is explored under an energy-efficient first-to-spike action rule, whereby the action taken by the RL agent is determined by the occurrence of the first spike among the output neurons. A policy gradient-based algorithm is derived considering a Generalized Linear Model (GLM) for spiking neurons. Experimental results demonstrate the capability of online trained SNNs as stochastic policies to gracefully trade energy consumption, as measured by the number of spikes, and control performance. Significant gains are shown as compared to the standard approach of converting an offline trained ANN into an SNN.
more »
« less
A Sparse and Spike‐Timing‐Based Adaptive Photoencoder for Augmenting Machine Vision for Spiking Neural Networks
Abstract The representation of external stimuli in the form of action potentials or spikes constitutes the basis of energy efficient neural computation that emerging spiking neural networks (SNNs) aspire to imitate. With recent evidence suggesting that information in the brain is more often represented by explicit firing times of the neurons rather than mean firing rates, it is imperative to develop novel hardware that can accelerate sparse and spike‐timing‐based encoding. Here a medium‐scale integrated circuit composed of two cascaded three‐stage inverters and one XOR logic gate fabricated using a total of 21 memtransistors based on photosensitive 2D monolayer MoS2 for spike‐timing‐based encoding of visual information, is introduced. It is shown that different illumination intensities can be encoded into sparse spiking with time‐to‐first‐spike representing the illumination information, that is, higher intensities invoke earlier spikes and vice versa. In addition, non‐volatile and analog programmability in the photoencoder is exploited for adaptive photoencoding that allows expedited spiking under scotopic (low‐light) and deferred spiking under photopic (bright‐light) conditions, respectively. Finally, low energy expenditure of less than 1 µJ by the 2D‐memtransistor‐based photoencoder highlights the benefits of in‐sensor and bioinspired design that can be transformative for the acceleration of SNNs.
more »
« less
- Award ID(s):
- 2042154
- PAR ID:
- 10444531
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 48
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spiking neural network (SNN) has attracted more and more research attention due to its event-based property. SNNs are more power efficient with such property than a conventional artificial neural network. For transferring the information to spikes, SNNs need an encoding process. With the temporal encoding schemes, SNN can extract the temporal patterns from the original information. A more advanced encoding scheme is a multiplexing temporal encoding which combines several encoding schemes with different timescales to have a larger information density and dynamic range. After that, the spike timing dependence plasticity (STDP) learning algorithm is utilized for training the SNN since the SNN can not be trained with regular training algorithms like backpropagation. In this work, a spiking domain feature extraction neural network with temporal multiplexing encoding is designed on EAGLE and fabricated on the PCB board. The testbench’s power consumption is 400mW. From the test result, a conclusion can be drawn that the network on PCB can transfer the input information to multiplexing temporal encoded spikes and then utilize the spikes to adjust the synaptic weight voltage.more » « less
-
We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 28nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4–773 nJ/image).more » « less
-
Information coding by precise timing of spikes can be faster and more energy efficient than traditional rate coding. However, spike-timing codes are often brittle, which has limited their use in theoretical neuroscience and computing applications. Here, we propose a type of attractor neural network in complex state space and show how it can be leveraged to construct spiking neural networks with robust computational properties through a phase-to-timing mapping. Building on Hebbian neural associative memories, like Hopfield networks, we first propose threshold phasor associative memory (TPAM) networks. Complex phasor patterns whose components can assume continuous-valued phase angles and binary magnitudes can be stored and retrieved as stable fixed points in the network dynamics. TPAM achieves high memory capacity when storing sparse phasor patterns, and we derive the energy function that governs its fixed-point attractor dynamics. Second, we construct 2 spiking neural networks to approximate the complex algebraic computations in TPAM, a reductionist model with resonate-and-fire neurons and a biologically plausible network of integrate-and-fire neurons with synaptic delays and recurrently connected inhibitory interneurons. The fixed points of TPAM correspond to stable periodic states of precisely timed spiking activity that are robust to perturbation. The link established between rhythmic firing patterns and complex attractor dynamics has implications for the interpretation of spike patterns seen in neuroscience and can serve as a framework for computation in emerging neuromorphic devices.more » « less
-
Spiking Neural Networks (SNNs) are energy-efficient artificial neural network models that can carry out data-intensive applications. Energy consumption, latency, and memory bottleneck are some of the major issues that arise in machine learning applications due to their data-demanding nature. Memristor-enabled Computing-In-Memory (CIM) architectures have been able to tackle the memory wall issue, eliminating the energy and time-consuming movement of data. In this work we develop a scalable CIM-based SNN architecture with our fabricated two-layer memristor crossbar array. In addition to having an enhanced heat dissipation capability, our memristor exhibits substantial enhancement of 10% to 66% in design area, power and latency compared to state-of-the-art memristors. This design incorporates an inter-spike interval (ISI) encoding scheme due to its high information density to convert the incoming input signals into spikes. Furthermore, we include a time-to-first-spike (TTFS) based output processing stage for its energy-efficiency to carry out the final classification. With the combination of ISI, CIM and TTFS, this network has a competitive inference speed of 2μs/image and can successfully classify handwritten digits with 2.9mW of power and 2.51pJ energy per spike. The proposed architecture with the ISI encoding scheme can achieve ∼10% higher accuracy than those of other encoding schemes in the MNIST dataset.more » « less