- Award ID(s):
- 1710009
- NSF-PAR ID:
- 10180303
- Date Published:
- Journal Name:
- 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Time-to-first-spike(TTFS ) encoded spiking neural networks (SNNs), implemented using memristive crossbar arrays (MCA), achieve higher inference speed and energy efficiency compared to artificial neural networks (ANNs) and rate encoded SNNs. However, memristive crossbar arrays are vulnerable to conductance variations in the embedded memristor cells. These degrade the performance of TTFS encoded SNNs, namely their classification accuracy with adverse impact on the yield of manufactured chips. To combat this yield loss, we propose a post-manufacture testing and tuning framework for these SNNs. In the testing phase, a timing encoded signature of the SNN, which is statistically correlated to the SNN performance, is extracted. In the tuning phase, this signature is mapped to optimal values of the tuning knobs (gain parameters), one parameter per layer, using a trained regressor, allowing very fast tuning (about 150ms). To further reduce the tuning overhead, we rank order hidden layer neurons based on their criticality and show that adding gain programmability only to 50% of the neurons is sufficient for performance recovery. Experiments show that the proposed framework can improve yield by up to 34% and average accuracy of memristive SNNs by up to 9%.more » « less
-
Abstract The representation of external stimuli in the form of action potentials or spikes constitutes the basis of energy efficient neural computation that emerging spiking neural networks (SNNs) aspire to imitate. With recent evidence suggesting that information in the brain is more often represented by explicit firing times of the neurons rather than mean firing rates, it is imperative to develop novel hardware that can accelerate sparse and spike‐timing‐based encoding. Here a medium‐scale integrated circuit composed of two cascaded three‐stage inverters and one XOR logic gate fabricated using a total of 21 memtransistors based on photosensitive 2D monolayer MoS2 for spike‐timing‐based encoding of visual information, is introduced. It is shown that different illumination intensities can be encoded into sparse spiking with time‐to‐first‐spike representing the illumination information, that is, higher intensities invoke earlier spikes and vice versa. In addition, non‐volatile and analog programmability in the photoencoder is exploited for adaptive photoencoding that allows expedited spiking under scotopic (low‐light) and deferred spiking under photopic (bright‐light) conditions, respectively. Finally, low energy expenditure of less than 1 µJ by the 2D‐memtransistor‐based photoencoder highlights the benefits of in‐sensor and bioinspired design that can be transformative for the acceleration of SNNs.
-
null (Ed.)Spike train classification is an important problem in many areas such as healthcare and mobile sensing, where each spike train is a high-dimensional time series of binary values. Conventional re- search on spike train classification mainly focus on developing Spiking Neural Networks (SNNs) under resource-sufficient settings (e.g., on GPU servers). The neurons of the SNNs are usually densely connected in each layer. However, in many real-world applications, we often need to deploy the SNN models on resource-constrained platforms (e.g., mobile devices) to analyze high-dimensional spike train data. The high resource requirement of the densely-connected SNNs can make them hard to deploy on mobile devices. In this paper, we study the problem of energy-efficient SNNs with sparsely- connected neurons. We propose an SNN model with sparse spatio-temporal coding. Our solution is based on the re-parameterization of weights in an SNN and the application of sparsity regularization during optimization. We compare our work with the state-of-the-art SNNs and demonstrate that our sparse SNNs achieve significantly better computational efficiency on both neuromorphic and standard datasets with comparable classification accuracy. Furthermore, com- pared with densely-connected SNNs, we show that our method has a better capability of generalization on small-size datasets through extensive experiments.more » « less
-
Spike train classification is an important problem in many areas such as healthcare and mobile sensing, where each spike train is a high-dimensional time series of binary values. Conventional re- search on spike train classification mainly focus on developing Spiking Neural Networks (SNNs) under resource-sufficient settings (e.g., on GPU servers). The neurons of the SNNs are usually densely connected in each layer. However, in many real-world applications, we often need to deploy the SNN models on resource-constrained platforms (e.g., mobile devices) to analyze high-dimensional spike train data. The high resource requirement of the densely-connected SNNs can make them hard to deploy on mobile devices. In this paper, we study the problem of energy-efficient SNNs with sparsely- connected neurons. We propose an SNN model with sparse spatiotemporal coding. Our solution is based on the re-parameterization of weights in an SNN and the application of sparsity regularization during optimization. We compare our work with the state-of-the-art SNNs and demonstrate that our sparse SNNs achieve significantly better computational efficiency on both neuromorphic and standard datasets with comparable classification accuracy. Furthermore, com- pared with densely-connected SNNs, we show that our method has a better capability of generalization on small-size datasets through extensive experiments.more » « less
-
null (Ed.)Brain-inspired cognitive computing has so far followed two major approaches - one uses multi-layered artificial neural networks (ANNs) to perform pattern-recognition-related tasks, whereas the other uses spiking neural networks (SNNs) to emulate biological neurons in an attempt to be as efficient and fault-tolerant as the brain. While there has been considerable progress in the former area due to a combination of effective training algorithms and acceleration platforms, the latter is still in its infancy due to the lack of both. SNNs have a distinct advantage over their ANN counterparts in that they are capable of operating in an event-driven manner, thus consuming very low power. Several recent efforts have proposed various SNN hardware design alternatives, however, these designs still incur considerable energy overheads.In this context, this paper proposes a comprehensive design spanning across the device, circuit, architecture and algorithm levels to build an ultra low-power architecture for SNN and ANN inference. For this, we use spintronics-based magnetic tunnel junction (MTJ) devices that have been shown to function as both neuro-synaptic crossbars as well as thresholding neurons and can operate at ultra low voltage and current levels. Using this MTJ-based neuron model and synaptic connections, we design a low power chip that has the flexibility to be deployed for inference of SNNs, ANNs as well as a combination of SNN-ANN hybrid networks - a distinct advantage compared to prior works. We demonstrate the competitive performance and energy efficiency of the SNNs as well as hybrid models on a suite of workloads. Our evaluations show that the proposed design, NEBULA, is up to 7.9× more energy efficient than a state-of-the-art design, ISAAC, in the ANN mode. In the SNN mode, our design is about 45× more energy-efficient than a contemporary SNN architecture, INXS. Power comparison between NEBULA ANN and SNN modes indicates that the latter is at least 6.25× more power-efficient for the observed benchmarks.more » « less