Time-to-first-spike(TTFS ) encoded spiking neural networks (SNNs), implemented using memristive crossbar arrays (MCA), achieve higher inference speed and energy efficiency compared to artificial neural networks (ANNs) and rate encoded SNNs. However, memristive crossbar arrays are vulnerable to conductance variations in the embedded memristor cells. These degrade the performance of TTFS encoded SNNs, namely their classification accuracy with adverse impact on the yield of manufactured chips. To combat this yield loss, we propose a post-manufacture testing and tuning framework for these SNNs. In the testing phase, a timing encoded signature of the SNN, which is statistically correlated to the SNN performance, is extracted. In the tuning phase, this signature is mapped to optimal values of the tuning knobs (gain parameters), one parameter per layer, using a trained regressor, allowing very fast tuning (about 150ms). To further reduce the tuning overhead, we rank order hidden layer neurons based on their criticality and show that adding gain programmability only to 50% of the neurons is sufficient for performance recovery. Experiments show that the proposed framework can improve yield by up to 34% and average accuracy of memristive SNNs by up to 9%.
more »
« less
Learning First-to-Spike Policies for Neuromorphic Control Using Policy Gradients
Artificial Neural Networks (ANNs) are currently being used as function approximators in many state-of-the-art Reinforcement Learning (RL) algorithms. Spiking Neural Networks (SNNs) have been shown to drastically reduce the energy consumption of ANNs by encoding information in sparse temporal binary spike streams, hence emulating the communication mechanism of biological neurons. Due to their low energy consumption, SNNs are considered to be important candidates as co-processors to be implemented in mobile devices. In this work, the use of SNNs as stochastic policies is explored under an energy-efficient first-to-spike action rule, whereby the action taken by the RL agent is determined by the occurrence of the first spike among the output neurons. A policy gradient-based algorithm is derived considering a Generalized Linear Model (GLM) for spiking neurons. Experimental results demonstrate the capability of online trained SNNs as stochastic policies to gracefully trade energy consumption, as measured by the number of spikes, and control performance. Significant gains are shown as compared to the standard approach of converting an offline trained ANN into an SNN.
more »
« less
- Award ID(s):
- 1710009
- PAR ID:
- 10180303
- Date Published:
- Journal Name:
- 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Time-to-first-spike (TTFS) encoded spiking neural networks (SNNs), implemented using memristive crossbar arrays (MCA), achieve higher inference speed and energy efficiency compared to artificial neural networks (ANNs) and rate encoded SNNs. However, memristive crossbar arrays are vulnerable to conductance variations in the embedded memristor cells. These degrade the performance of TTFS encoded SNNs, namely their classification accuracy, with adverse impact on the yield of manufactured chips. To combat this yield loss, we propose a postmanufacture testing and tuning framework for these SNNs. In the testing phase, a timing encoded signature of the SNN, which is statistically correlated to the SNN performace, is extracted. In the tuning phase, this signature is mapped to optimal values of the tuning knobs (gain parameters), one parameter per layer, using a trained regressor, allowing very fast tuning (about 150ms). To further reduce the tuning overhead, we rank order hidden layer neurons based on their criticality and show that adding gain programmability only to 50% of the neurons is sufficient for performance recovery. Experiments show that the proposed framework can improve yield by up to 34% and average accuracy of memristive SNNs by up to 9%.more » « less
-
While machine learning (ML) models are becoming mainstream, including in critical application domains, concerns have been raised about the increasing risk of sensitive data leakage. Various privacy attacks, such as membership inference attacks (MIAs), have been developed to extract data from trained ML models, posing significant risks to data confidentiality. While the predominant work in the ML community considers traditional Artificial Neural Networks (ANNs) as the default neural model, neuromorphic architectures, such as Spiking Neural Networks (SNNs), have recently emerged as an attractive alternative mainly due to their significantly low power consumption. These architectures process information through discrete events, i.e., spikes, to mimic the functioning of biological neurons in the brain. While the privacy issues have been extensively investigated in the context of traditional ANNs, they remain largely unexplored in neuromorphic architectures, and little work has been dedicated to investigating their privacy-preserving properties. In this paper, we investigate the question of whether SNNs have inherent privacy-preserving advantages. Specifically, we investigate SNNs’ privacy properties through the lens of MIAs across diverse datasets, in comparison with ANNs. We explore the impact of different learning algorithms (surrogate gradient and evolutionary learning), programming frameworks (snnTorch, TENNLab, and LAVA), and various parameters on the resilience of SNNs against MIA. Our experiments reveal that SNNs demonstrate consistently superior privacy preservation compared to ANNs, with evolutionary algorithms further enhancing their resilience. For example, on the CIFAR-10 dataset, SNNs achieve an AUC as low as 0.59 compared to 0.82 for ANNs, and on CIFAR-100, SNNs maintain a low AUC of 0.58, whereas ANNs reach 0.88. Furthermore, we investigate the privacy-utility trade-off through Differentially Private Stochastic Gradient Descent (DPSGD), observing that SNNs incur a notably lower accuracy drop than ANNs under equivalent privacy constraints.more » « less
-
Abstract The representation of external stimuli in the form of action potentials or spikes constitutes the basis of energy efficient neural computation that emerging spiking neural networks (SNNs) aspire to imitate. With recent evidence suggesting that information in the brain is more often represented by explicit firing times of the neurons rather than mean firing rates, it is imperative to develop novel hardware that can accelerate sparse and spike‐timing‐based encoding. Here a medium‐scale integrated circuit composed of two cascaded three‐stage inverters and one XOR logic gate fabricated using a total of 21 memtransistors based on photosensitive 2D monolayer MoS2 for spike‐timing‐based encoding of visual information, is introduced. It is shown that different illumination intensities can be encoded into sparse spiking with time‐to‐first‐spike representing the illumination information, that is, higher intensities invoke earlier spikes and vice versa. In addition, non‐volatile and analog programmability in the photoencoder is exploited for adaptive photoencoding that allows expedited spiking under scotopic (low‐light) and deferred spiking under photopic (bright‐light) conditions, respectively. Finally, low energy expenditure of less than 1 µJ by the 2D‐memtransistor‐based photoencoder highlights the benefits of in‐sensor and bioinspired design that can be transformative for the acceleration of SNNs.more » « less
-
Spike train classification is an important problem in many areas such as healthcare and mobile sensing, where each spike train is a high-dimensional time series of binary values. Conventional re- search on spike train classification mainly focus on developing Spiking Neural Networks (SNNs) under resource-sufficient settings (e.g., on GPU servers). The neurons of the SNNs are usually densely connected in each layer. However, in many real-world applications, we often need to deploy the SNN models on resource-constrained platforms (e.g., mobile devices) to analyze high-dimensional spike train data. The high resource requirement of the densely-connected SNNs can make them hard to deploy on mobile devices. In this paper, we study the problem of energy-efficient SNNs with sparsely- connected neurons. We propose an SNN model with sparse spatiotemporal coding. Our solution is based on the re-parameterization of weights in an SNN and the application of sparsity regularization during optimization. We compare our work with the state-of-the-art SNNs and demonstrate that our sparse SNNs achieve significantly better computational efficiency on both neuromorphic and standard datasets with comparable classification accuracy. Furthermore, com- pared with densely-connected SNNs, we show that our method has a better capability of generalization on small-size datasets through extensive experiments.more » « less
An official website of the United States government

