skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lewis Acid Site Assisted Bifunctional Activity of Tin Doped Gallium Oxide and Its Application in Rechargeable Zn‐Air Batteries
Abstract The enhanced safety, superior energy, and power density of rechargeable metal‐air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost‐effective and stable bifunctional catalyst that can replace expensive platinum (Pt)‐based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped β‐gallium oxide (β‐Ga2O3) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn‐air batteries. The Sn‐doped β‐Ga2O3sample with 15% Sn (Snx=0.15‐Ga2O3) displayed exceptional catalytic activity for a bulk, non‐noble metal‐based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx=0.15‐Ga2O3leads to a prototype Zn‐air battery with a high‐power density of 138 mW cm−2and improved cycling stability compared to devices with benchmark Pt‐based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in β‐Ga2O3aid in regulating the electron density distribution on the Sn‐doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.  more » « less
Award ID(s):
1827745
PAR ID:
10444567
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
18
Issue:
34
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to the monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons. 
    more » « less
  2. Abstract The main drawbacks of today's state‐of‐the‐art lithium–air (Li–air) batteries are their low energy efficiency and limited cycle life due to the lack of earth‐abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3P) nanoparticles with an exceptional activity—ORR and OER current densities of 7.21 and 6.85 mA cm−2at 2.0 and 4.2 V versus Li/Li+, respectively—in an oxygen‐saturated non‐aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance—Tafel slopes of 35 and 38 mV dec−1for ORR and OER, respectively—resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li–air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials. 
    more » « less
  3. Abstract The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt‐alloy with a Pt‐skin. The synthesis of ultrasmall and ordered L10‐PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10‐W‐PtCo/C catalyst shows significant improvement in both initial activity and high‐temperature stability. The L10‐W‐PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt‐Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface. 
    more » « less
  4. Transition metal selenides have attracted intensive interest as cost-effective electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) because of the continuous thrust in sustainable energy conversion. In this article a Mn-based bifunctional electrocatalyst, MnSe, has been identified which shows efficient OER and ORR activity in alkaline medium. The catalytic activity could be further enhanced by using multiwalled carbon nanotubes (MWCNTs) which increases the charge transfer and electronic conductivity of the catalyst composite. This MnSe@MWCNT catalyst composite exhibits a very low overpotential of 290 mV at 10 mA cm −2 , which outperforms state-of-the-art RuO 2 as well as other oxide based electrocatalysts. Furthermore, the composite's facile OER kinetics was evidenced by its small Tafel slope of 54.76 mV dec −1 and low charge transfer resistance, indicating quick transport of the reactant species at the electrode interface. The MnSe@MWCNT also exhibited efficient electrocatalytic activity for ORR with an E onset of 0.94 V, which is among the best reported to date for chalcogenide based ORR electrocatalysts. More importantly, this MnSe-based ORR electrocatalyst exhibits high degree of methanol tolerance, showing no degradation of catalyst performance in the presence of copious quantities of methanol, thereby out-performing the state-of-the-art Pt electrocatalyst. The catalyst composite also exhibited exceptional functional and compositional stability for OER and ORR after a prolonged period of continuous operation in alkaline medium. The surface Raman analysis after OER revealed the retention of manganese selenide surface with evidence of oxo coordination, confirming the formation of an (oxy)selenide as the active surface for OER. Such efficient bifunctional OER and ORR activity makes this MnSe based catalyst attractive for overall electrolysis in regenerative as well as direct methanol fuel cells. 
    more » « less
  5. Abstract It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc–air batteries (ZABs). Herein, a CoFe‐S@3D‐S‐NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf‐like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe‐MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core–shell structure, and S, N‐doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm−2), superior specific capacity (815 mA h gZn−1), and excellent stability at 5 mA cm−2for ≈900 h. The quasi‐solid‐state ZABs also exhibit a very high peak power density of 490 mW cm−2and an excellent voltage round‐trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs. 
    more » « less