skip to main content

Title: Development and Investigation of GridRad-Severe, a Multiyear Severe Event Radar Dataset

Many studies have aimed to identify novel storm characteristics that are indicative of current or future severe weather potential using a combination of ground-based radar observations and severe reports. However, this is often done on a small scale using limited case studies on the order of tens to hundreds of storms due to how time-intensive this process is. Herein, we introduce the GridRad-Severe dataset, a database including ∼100 severe weather days per year and upward of 1.3 million objectively tracked storms from 2010 to 2019. Composite radar volumes spanning objectively determined, report-centered domains are created for each selected day using the GridRad compositing technique, with dates objectively determined using report thresholds defined to capture the highest-end severe weather days from each year, evenly distributed across all severe report types (tornadoes, severe hail, and severe wind). Spatiotemporal domain bounds for each event are objectively determined to encompass both the majority of reports and the time of convection initiation. Severe weather reports are matched to storms that are objectively tracked using the radar data, so the evolution of the storm cells and their severe weather production can be evaluated. Herein, we apply storm mode (single-cell, multicell, or mesoscale convective system storms) and right-moving supercell classification techniques to the dataset, and revisit various questions about severe storms and their bulk characteristics posed and evaluated in past work. Additional applications of this dataset are reviewed for possible future studies.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Page Range / eLocation ID:
p. 2257-2277
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This research quantifies the spatiotemporal statistics of composite radar reflectivity in the vicinity of severe thunderstorm reports. By using over 20 years (1996–2017) of data and 500,000 severe thunderstorm reports, this study presents the most comprehensive analysis of the mesoscale presentation of radar reflectivity composites during severe weather events to date. We first present probability matched mean composites of approximately 5,000 radar images centred on tornado reports that contain one of three types of manually‐labelled convective storm modes—namely, (a) quasi‐linear convective system (QLCS); (b) cellular; or (c) tropical system. Next, we generate composites for tornado report data stratified by EF‐scale and for four temporal periods during which notable severe weather events took place. The data are then stratified by hazard, region, season, and time of day. The results show marked spatiotemporal and intra‐hazard variability in radar presentation. In general, cellular convection is favoured in the Great Plains of the United States, whereas QLCS convection is favoured in the Southeast United States. Night and cool‐season subsets showed a preference for QLCS convection, whereas day and warm‐season subsets showed a preference for cellular convection. These results agree well with the existing literature and suggest that the data extraction and organization approach is sound. Because of this, these data will be useful for future image classification studies in climate and atmospheric sciences—particularly those involving storm mode classification.

    more » « less
  2. Abstract Severe convective storms along the Front Range and eastern plains of Colorado frequently produce tornadoes and hail, leading to substantial damage and crop losses annually. Determination of future human exposure from these events must consider both changes in meteorological conditions and population dynamics. Projections of EF0 + tornadoes (on the enhanced Fujita scale) and severe [1.0+ in. (25.4+ mm)] hail reports out to the year 2100 are computed using convective parameter proxies generated from dynamically downscaled GFDL Climate Model, version 3 (GFDL CM3), output by the WRF Model for control and future climate scenarios. The proxies suggest that tornado and hail days in the region may increase by up to one tornado day and three hail days per year by 2100, with the greatest increases across northeastern Colorado. Using a spatially explicit Monte Carlo model, projected future frequency and spatial changes in tornadoes and hail are superimposed with population projections from the shared socioeconomic pathways (SSPs) to provide a range of possible scenarios for end-of-century human exposure to tornadoes and hailstorms. Changes in hazard frequency and spatial distribution may amplify human exposure up to 117% for tornadoes and 178% for hail in the region by 2100, although specific results are sensitive to uncertain combinations of future overlaps between hazard spatial distribution and population. Findings presented herein not only will provide the public, insurers, policy makers, land-use planners, and researchers with estimates of potential future tornado and hail impacts in the Front Range region, they also will allow the weather enterprise to better understand, prepare for, and communicate tornado and hail risk to eastern Colorado communities. 
    more » « less
  3. Abstract

    The National Weather Service plays a critical role in alerting the public when dangerous weather occurs. Tornado warnings are one of the most publicly visible products the NWS issues given the large societal impacts tornadoes can have. Understanding the performance of these warnings is crucial for providing adequate warning during tornadic events and improving overall warning performance. This study aims to understand warning performance during the lifetimes of individual storms (specifically in terms of probability of detection and lead time). For example, does probability of detection vary based on if the tornado was the first produced by the storm, or the last? We use tornado outbreak data from 2008 to 2014, archived NEXRAD radar data, and the NWS verification database to associate each tornado report with a storm object. This approach allows for an analysis of warning performance based on the chronological order of tornado occurrence within each storm. Results show that the probability of detection and lead time increase with later tornadoes in the storm; the first tornadoes of each storm are less likely to be warned and on average have less lead time. Probability of detection also decreases overnight, especially for first tornadoes and storms that only produce one tornado. These results are important for understanding how tornado warning performance varies during individual storm life cycles and how upstream forecast products (e.g., Storm Prediction Center tornado watches, mesoscale discussions, etc.) may increase warning confidence for the first tornado produced by each storm.

    Significance Statement

    In this study, we focus on better understanding real-time tornado warning performance on a storm-by-storm basis. This approach allows us to examine how warning performance can change based on the order of each tornado within its parent storm. Using tornado reports, warning products, and radar data during tornado outbreaks from 2008 to 2014, we find that probability of detection and lead time increase with later tornadoes produced by the same storm. In other words, for storms that produce multiple tornadoes, thefirsttornado is generally the least likely to be warned in advance; when it is warned in advance, it generally contains less lead time than subsequent tornadoes. These findings provide important new analyses of tornado warning performance, particularly for the first tornado of each storm, and will help inform strategies for improving warning performance.

    more » « less
  4. Abstract

    Geostationary satellite imagers provide historical and near-real-time observations of cloud-top patterns that are commonly associated with severe convection. Environmental conditions favorable for severe weather are thought to be represented well by reanalyses. Predicting exactly where convection and costly storm hazards like hail will occur using models or satellite imagery alone, however, is extremely challenging. The multivariate combination of satellite-observed cloud patterns with reanalysis environmental parameters, linked to Next Generation Weather Radar (NEXRAD) estimated maximum expected size of hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe hail likelihood for any observed storm cell. These estimates are made where satellites observe cold clouds, indicative of convection, located in favorable storm environments. We seek an approach that can be used to estimate climatological hailstorm frequency and risk throughout the historical satellite data record. Statistical distributions of convective parameters from satellite and reanalysis show separation between nonsevere and severe hailstorm classes for predictors that include overshooting cloud-top temperature and area characteristics, vertical wind shear, and convective inhibition. These complex, multivariate predictor relationships are exploited within a DNN to produce a likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, which is exceptional among analogous hail studies. Furthermore, applications of the DNN to case studies demonstrate good qualitative agreement between hail likelihood and MESH. These hail classifications are aggregated across an 11-yr Geostationary Operational Environmental Satellite (GOES) image database fromGOES-12/13to derive a hail frequency and severity climatology, which denotes the central Great Plains, the Midwest, and northwestern Mexico as being the most hail-prone regions within the domain studied.

    more » « less
  5. The occurrence and properties of hail smaller than severe thresholds (diameter < 25 mm) are poorly understood. Prior climatological hail studies have predominantly focused on large or severe hail (diameter at least 25 mm or 1 inch). Through use of data from the Meteorological Phenomena Identification Near the Ground project, Storm Data, and the Community Collaborative Rain, Hail and Snow Network the occurrence and characteristics of both severe, and sub-severe hail are explored. Spatial distributions of days with the different classes of hail are developed on an annual and seasonal basis for the period 2013-2020. Annually, there are several hail-day maxima that do not follow the maxima of severe hail: the peak is broadly centered over Oklahoma (about 28 days per year). A secondary maxima exists over the Colorado Front Range (about 26 days per year), a third extends across northern Indiana from the southern tip of Lake Michigan (about 24 days per year with hail), and a fourth area is centered over the corners of southwest North Carolina, northwest South Carolina, and the northeast tip of Georgia. Each of these maxima in hail days are driven by sub-severe hail. While similar patterns of severe hail have been previously documented, this is the first clear documentation of sub-severe hail patterns since the early 1990s. Analysis of the hail size distribution suggests that to capture the overall hail risk, each dataset provides a complimentary data source. 
    more » « less