skip to main content

Title: Dynamic Steady State in Coastal Aquifers Is Driven by Multi‐Scale Cyclical Processes, Controlled by Aquifer Storativity

Coastal aquifers supply freshwater to nearly half the global population, yet they are threatened by salinization. Salinities are typically estimated assuming steady‐state, neglecting the effect of cyclical forcings on average salinity distributions. Here, numerical modeling is used to test this assumption. Multi‐scale fluctuations in sea level (SL) are simulated, from tides to glacial cycles. Results show that high‐frequency fluctuations alter average salinities compared with the steady‐state distribution produced by average SL. Low‐frequency forcing generates discrepancies between present‐day salinities estimated with and without considering the cyclical forcing due to overshoot effects. This implies that salinities in coastal aquifers may be erroneously estimated when assuming steady‐state conditions, since present distributions are likely part of a dynamic steady state that includes forcing on multiple timescales. Further, typically neglected aquifer storage characteristics can strongly control average salinity distributions. This has important implications for managing vulnerable coastal groundwater resources and for calibration of hydrogeological models.

more » « less
Award ID(s):
1757353 1848650
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future increases in the frequency of tidal flooding due to sea level rise (SLR) are likely to affect pore water salinities in coastal aquifers. In this study, we investigate the impact of increased tidal flooding frequency on salinity and flow dynamics in coastal aquifers using numerical variable‐density variably‐saturated groundwater flow and salt transport models. Short (sub‐daily) and long (decadal) period tides are combined with SLR projections to drive continuous 80‐year models of flow and salt transport. Results show that encroaching intertidal zones lead to both periodic and long‐term vertical salinization of the upper aquifer. Salinization of the upper aquifer due to tidal flooding forces the lower interface seaward, even under SLR. System dynamics are controlled by the interplay between SLR and long period tidal forcing associated with perigean spring tides and the 18.6‐year lunar nodal cycle. Periodic tidal flooding substantially enhances intertidal saltwater‐freshwater mixing, resulting in a 6‐ to 10‐fold expansion of the intertidal saltwater‐freshwater mixing area across SLR scenarios. The onset of the expansion coincides with extreme high water levels resulting from lunar nodal cycling of tidal constituent amplitudes. The findings are the first to demonstrate the combined effects of gradual SLR and short and long period tides on aquifer salinity distributions, and reveal competing influences of SLR on saltwater intrusion. The results are likely to have important implications for coastal ocean chemical fluxes and groundwater resources as tidal flooding intensifies worldwide.

    more » « less
  2. Abstract

    Despite the prevalence of density‐dependent flow systems in the brine‐rich aquifers of arid climates and coastal aquifers, the impact of realistic geologic conditions on interface geometry and density‐dependent time‐sensitive dynamics remains poorly constrained. Salar de Atacama provides an analog for exploring interface dynamics in arid regions. A site‐specific two‐dimensional hydrostratigraphic interpretation is used to examine the dynamics of the brine‐to‐freshwater interface. With the same simulation framework and core data, a separate parametric series of hydraulic conductivity distributions with varying horizontal continuity provides a mechanistic explanation for observed dynamics. Comparing modeled interfaces and their sensitivity to perturbations in recharge in each realization yields insight into interface dynamics coupled with horizontal continuity in subsurface heterogeneity. Recharge fluctuation is introduced to each distribution following the interface reaching a dynamic steady state. Metrics for results evaluation include interface slope geometry, interface width, migration length, and response rate. Analyses suggest that the average slope of the modeled interface shallows by 0.01 and 0.05 m ⋅ m−1for an increase in continuity of highly permeable pathways by a factor of two and three, respectively. Increasing continuity also increases the overall response times and the variability in response. Results indicate that accurate representations of transient dynamics in modeling density‐dependent brine‐to‐freshwater interface dynamics requires the consideration of heterogeneity, as saline intrusion in the highest continuity group extends over twice as far on average and the modeled interface takes over 43% more time on average to reach a new dynamic steady state when compared to their homogeneous counterparts.

    more » « less
  3. Abstract

    Numerical models of variable‐density groundwater flow and salt transport are a primary tool for predicting salinity distributions in coastal aquifers and estimating submarine groundwater discharge (SGD). Models are particularly useful to estimate the saline component of SGD, which can occur far offshore and is difficult to measure directly. Depending on the system and application, the level of geologic detail represented can range from homogeneous or layered to fully heterogeneous hydraulic conductivity fields. These features strongly affect model results, limiting understanding of subsurface salinity distributions and associated density‐driven saltwater circulation along coasts worldwide. In this study, the impact of the scale of representation of heterogeneity on salinity distributions and SGD was investigated using numerical simulations. Upscaling hydraulic conductivity can significantly modify salinity distributions and flow paths, resulting in unpredictable variations in simulated SGD, though the values for homogeneous fields with equivalent hydraulic conductivity show consistent trends. Simulated density distributions control both the rate and direction of subsurface saltwater circulation. The length of the mixing zone perimeter, a measure of salinity distribution complexity, is shown to correlate with both the rate of subsurface saltwater circulation and the amount of groundwater circulating in the reverse direction from homogeneous cases. Overall, the results demonstrate a strong dependence of salinity distributions and saltwater circulation on the scale and distribution of geologic heterogeneity represented in numerical models. This suggests that numerical models with simplified geologic structure may substantially underestimate saltwater circulation, and attempts to calibrate them using salinity distributions or SGD measurements may be problematic.

    more » « less
  4. Abstract

    To predict the impacts of environmental change on species, we must first understand the factors that limit the present-day ranges of species. Most anuran amphibians cannot survive at elevated salinities, which may drive their distribution in coastal locations. Previous research showed that coastal Hyla cinerea are locally adapted to brackish habitats in North Carolina, USA. Although Hyla squirella and Hyla chrysoscelis both inhabit coastal wetlands nearby, they have not been observed in saline habitats. We take advantage of naturally occurring microgeographic variation in coastal wetland occupancy exhibited by these congeneric tree frog species to explore how salt exposure affects oviposition site choice, hatching success, early tadpole survival, plasma osmolality and tadpole body condition across coastal and inland locations. We observed higher survival among coastal H. cinerea tadpoles than inland H. cinerea, which corroborates previous findings. But contrary to expectations, coastal H. cinerea had lower survival than H. squirella and H. chrysoscelis, indicating that all three species may be able to persist in saline wetlands. We also observed differences in tadpole plasma osmolality across species, locations and salinities, but these differences were not associated with survival rates in salt water. Instead, coastal occupancy may be affected by stage-specific processes like higher probability of total clutch loss as shown by inland H. chrysoscelis or maladaptive egg deposition patterns as shown by inland H. squirella. Although we expected salt water to be the primary filter driving species distributions along a coastal salinity gradient, it is likely that the factors dictating anuran ranges along the coast involve stage-, species- and location-specific processes that are mediated by ecological processes and life history traits.

    more » « less
  5. Abstract

    Following the passage of a tropical cyclone (TC) the changes in temperature, salinity, nutrient concentration, water clarity, pigments and phytoplankton taxa were assessed at 42 stations from eight sites ranging from the open ocean, through the coastal zone and into estuaries. The impacts of the TC were estimated relative to the long-term average (LTA) conditions as well as before and after the TC. Over all sites the most consistent environmental impacts associated with TCs were an average 41% increase in turbidity, a 13% decline in salinity and a 2% decline in temperature relative to the LTA. In the open ocean, the nutrient concentrations, cyanobacteria and picoeukaryote abundances increased at depths between 100 and 150 m for up to 3 months following a TC. While at the riverine end of coastal estuaries, the predominate short-term response was a strong decline in salinity and phytoplankton suggesting these impacts were initially dominated by advection. The more intermediate coastal water-bodies generally experienced declines in salinity, significant reductions in water clarity, plus significant increases in nutrient concentrations and phytoplankton abundance. These intermediate waters typically developed dinoflagellate, diatom or cryptophyte blooms that elevated phytoplankton biomass for 1–3 months following a TC.

    more » « less