skip to main content


Title: Sequential Deposition of Organic Films with Eco‐Compatible Solvents Improves Performance and Enables Over 12%‐Efficiency Nonfullerene Solar Cells
Abstract

Casting of a donor:acceptor bulk‐heterojunction structure from a single ink has been the predominant fabrication method of organic photovoltaics (OPVs). Despite the success of such bulk heterojunctions, the task ofcontrolling the microstructure in a single casting process has been arduous and alternative approaches are desired. To achieve OPVs with a desirable microstructure, a facile and eco‐compatible sequential deposition approach is demonstrated for polymer/small‐molecule pairs. Using a nominally amorphous polymer as the model material, the profound influence of casting solvent is shown on the molecular ordering of the film, and thus the device performance and mesoscale morphology of sequentially deposited OPVs can be tuned. Static and in situ X‐ray scattering indicate that applying (R)‐(+)‐limonene is able to greatly promote the molecular order of weakly crystalline polymers and form the largest domain spacing exclusively, which correlates well with the best efficiency of 12.5% in sequentially deposited devices. The sequentially cast device generally outperforms its control device based on traditional single‐ink bulk‐heterojunction structure. More crucially, a simple polymer:solvent interaction parameter χ is positively correlated with domain spacing in these sequentially deposited devices. These findings shed light on innovative approaches to rationally create environmentally friendly and highly efficient electronics.

 
more » « less
Award ID(s):
1639429
NSF-PAR ID:
10444677
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
17
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding chemical degradation at the interface between different layers in an organic photovoltaic device (OPV) is crucial to improving the long‐term stability of OPVs. Herein, molecular‐level insights are provided into the impact of different metal top electrodes on the interfacial morphology and stability of photoactive layers in PM6:Y6 bulk‐heterojunction (BHJ) OPVs. OPVs with an aluminum (Al) top electrode exhibit inferior stability compared to silver (Ag) electrode devices upon thermal annealing, whereby thermal stress induces the diffusion of both Al and Ag atoms to the PM6:Y6 BHJ layer. The diffused Al atoms cause surface recombination at the interface between the photoactive layer and an interlayer. Specifically, X‐ray photoelectron spectroscopy suggests the different local chemical environments of PM6 and Y6 moieties in PM6:Y6/Al‐contact devices. These results are corroborated by solid‐state nuclear magnetic resonance and electron paramagnetic resonance spectroscopy measurements, indicating the formation of ionic and organo‐metallic‐like species at the sub‐layers of the PM6:Y6 BHJ morphology, which are estimated to be less than 5 wt% of the PM6:Y6/Al blend. By comparison, the Ag atoms do not adversely affect PM6:Y6 BHJ morphology and the associated device physics. The investigation of reactive electrode‐BHJ interfaces by multiscale characterization techniques and device physics is expected to provide guidance to future interfacial engineering strategies to develop stable and efficient OPVs.

     
    more » « less
  2. Abstract

    The influence of solvent and processing additives on the pathways and rates of crystalline morphology formation for spin‐coated semiconductingPTB7(poly[[4,8‐bis[(2‐ethylhexyl)oxy]benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)‐carbonyl]‐thieno[3,4‐b]thiophenediyl]]) thin films is investigated by in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and optical reflectance, to better understand polymer solar cell (PSC) optimization approaches. In situ characterization ofPTB7film formation from chloroform (CF), chlorobenzene (CB), and 1,2‐dichlorobenzene (DCB) solutions, as well as CB solutions with 1% and 3% v/v of the processing additives 1‐chloronapthalene (CN), diphenylether (DPE), and 1,8‐diiodooctane (DIO), reveals multiple crystallization pathways with: (i) single‐solvent systems exhibiting rapid (<3 s) crystallization after a solvent boiling point‐dependent film thinning transition, (ii) solvent + additive systems exhibiting different crystallization pathways and crystallite formation times from minutes (CN, DPE) to 1.5 h (DIO). Identifying crystalline intermediates has implications for bulk‐heterojunction PSC morphology optimization via optimized spin‐casting processes.

     
    more » « less
  3. Abstract

    Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells.

     
    more » « less
  4. Abstract

    The relation of phase morphology and solid‐state microstructure with organic photovoltaic (OPV) device performance has intensely been investigated over the last twenty years. While it has been established that a combination of donor:acceptor intermixing and presence of relatively phase‐pure donor and acceptor domains is needed to get an optimum compromise between charge generation and charge transport/charge extraction, a quantitative picture of how much intermixing is needed is still lacking. This is mainly due to the difficulty in quantitatively analyzing the intermixed phase, which generally is amorphous. Here, fast scanning calorimetry, which allows measurement of device‐relevant thin films (<200 nm thickness), is exploited to deduce the precise composition of the intermixed phase in bulk‐heterojunction structures. The power of fast scanning calorimetry is illustrated by considering two polymer:fullerene model systems. Somewhat surprisingly, it is found that a relatively small fraction (<15 wt%) of an acceptor in the intermixed amorphous phase leads to efficient charge generation. In contrast, charge transport can only be sustained in blends with a significant amount of the acceptor in the intermixed phase (in this case: ≈58 wt%). This example shows that fast scanning calorimetry is an important tool for establishing a complete compositional characterization of organic bulk heterojunctions. Hence, it will be critical in advancing quantitative morphology–function models that allow for the rational design of these devices, and in delivering insights in, for example, solar cell degradation mechanisms via phase separation, especially for more complex high‐performing systems such as nonfullerene acceptor:polymer bulk heterojunctions.

     
    more » « less
  5. Additive manufacturing of functional materials is limited by control of microstructure and assembly at the nanoscale. In this work, we integrate nonequilibrium self-assembly with direct-write three-dimensional (3D) printing to prepare bottlebrush block copolymer (BBCP) photonic crystals (PCs) with tunable structure color. After varying deposition conditions during printing of a single ink solution, peak reflected wavelength for BBCP PCs span a range of 403 to 626 nm (blue to red), corresponding to an estimated change in d-spacing of >70 nm (Bragg- Snell equation). Physical characterization confirms that these vivid optical effects are underpinned by tuning of lamellar domain spacing, which we attribute to modulation of polymer conformation. Using in situ optical microscopy and solvent-vapor annealing, we identify kinetic trapping of metastable microstructures during printing as the mechanism for domain size control. More generally, we present a robust processing scheme with potential for on-the-fly property tuning of a variety of functional materials. 
    more » « less