skip to main content


Title: Biogeochemical River Runoff Drives Intense Coastal Arctic Ocean CO 2 Outgassing
Key Points Mackenzie River biogeochemical discharge decreases the southeastern Beaufort Sea carbon sink Terrestrial dissolved inorganic carbon (DIC) is the primary driver of outgassing events in the SBS, followed by terrestrial DOC Interannual variability in river discharge modulates localized air‐sea CO 2 flux  more » « less
Award ID(s):
2230812 1914215 1913888 1914081
NSF-PAR ID:
10444806
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
8
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic landscapes are warming and becoming wetter due to changes in precipitation and the timing of snowmelt which consequently alters seasonal runoff and river discharge patterns. These changes in hydrology lead to increased mobilization and transport of terrestrial dissolved organic matter (DOM) to Arctic coastal seas where significant impacts on biogeochemical cycling can occur. Here, we present measurements of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) in the Yukon River-to-Bering Sea system and two river plumes on the Alaska North Slope which flow into the Beaufort Sea. Our sampling characterized optical and biogeochemical properties of DOM during high and low river discharge periods for the Yukon River-Bering Sea system. The average DOC concentration at the multiple Yukon River mouths ranged from a high of 10.36 mg C L -1 during the ascending limb of the 2019 freshet (late May), 6.4 mg C L -1 during the descending limb of the 2019 freshet (late June), and a low of 3.86 mg C L -1 during low river discharge in August 2018. CDOM absorption coefficient at 412 nm ( a CDOM (412)) averaged 8.23 m -1 , 5.07 m -1 , and 1.9 m -1 , respectively. Several approaches to model DOC concentration based on its relationship with CDOM properties demonstrated cross-system seasonal and spatial robustness for these Arctic coastal systems despite spanning an order of magnitude decrease in DOC concentration from the lower Yukon River to the Northern Bering Sea as well as the North Slope systems. “Snapshot” fluxes of DOC and CDOM across the Yukon River Delta to Norton Sound were calculated from our measurements and modeled water fluxes forced with upstream USGS river gauge data. Our findings suggest that during high river flow, DOM reaches the delta largely unaltered by inputs or physical and biogeochemical processing and that the transformations of Yukon River DOM largely occur in the plume. However, during low summer discharge, multiple processes including local precipitation events, microbial decomposition, photochemistry, and likely others can alter the DOM properties within the lower Yukon River and Delta prior to flowing into Norton Sound. 
    more » « less
  2. Abstract

    The partial pressure of carbon dioxide (pCO2) was surveyed across the Amazon River plume and the surrounding western tropical North Atlantic Ocean (15–0°N, 43–60°W) during three oceanic expeditions (May–June 2010, September–October 2011, and July 2012). The survey timing was chosen according to previously described temporal variability in plume behavior due to changing river discharge and winds.In situsea surfacepCO2and air‐sea CO2flux exhibited robust linear relationships with sea surface salinity (SSS; 15 < SSS < 35), although the relationships differed among the surveys. Regional distributions ofpCO2and CO2flux were estimated using SSS maps from high‐resolution ocean color satellite‐derived (MODIS‐Aqua) diffuse attenuation coefficient at 490 nm (Kd490) during the periods of study. Results confirmed that the plume is a net CO2sink with distinctive temporal variability: the strongest drawdown occurred during the spring flood (−2.39 ± 1.29 mmol m−2 d−1in June 2010), while moderate drawdown with relatively greater spatial variability was observed during the transitional stages of declining river discharge (−0.42 ± 0.76 mmol m−2 d−1in September–October 2011). The region turned into a weak source in July 2012 (0.26 ± 0.62 mmol m−2 d−1) when strong CO2uptake in the mid‐plume was overwhelmed by weak CO2outgassing over a larger area in the outer plume. Outgassing near the mouth of the river was observed in July 2012. Our observations draw attention to the importance of assessing the variable impacts of biological activity, export, and air‐sea gas exchange before estimating regional CO2fluxes from salinity distributions alone.

     
    more » « less
  3. R.M. Tshimanga ; G.D. Moukandi N’kaya ; D. Alsdorf (Ed.)
    Many river systems of the world are super-saturated in dissolved CO2 (pCO2) relative to equilibrium with the atmosphere. Here we compare the coupled organic matter and pCO2 dynamics of the world’s two largest and most organic-rich river systems. The emerging data sets for the Congo River, joint with Amazon River data, enable us to begin to think more generally about the overall functioning of the world’s two largest river basins. Discharge is the primary control on POC and DOC export in both the Amazon and Congo Rivers. TSS yield from the Amazon is twentyfold greater per unit area than the Congo. However, despite low TSS concentrations, the Congo has a POC content approximately five times higher than the Amazon. The organic-rich character of both watersheds is reflected in the DOC export, with the Amazon exporting ~11% and the Congo ~5% of the global land to ocean flux (but care should be taken when describing estimates of TSS and carbon to the ocean since processing and sequestration in tidal and coastal areas can significantly alter TSS and carbon delivery, and last measuring stations are typically hundreds of kilometers from the sea). pCO2 in the Amazon mainstem range from 1,000 to 10,000 ppm, with floodplain lakes ranging from 20 to 20,000 ppm. Concentrations in the Congo are lower, with high values of 5,000 ppm. The elevated level of pCO2 even as far as the mouth of such major rivers as the Amazon and Congo, up to thousands of kilometers from CO2-rich small streams, poses a most interesting question: What set of processes maintains such high levels? The answer is presumably some combination of instream metabolism of organic matter of terrestrial and floodplain origin, and/or injection of very high pCO2 water from local floodplains or tributaries." 
    more » « less
  4. Abstract. Anthropogenic warming in the Arctic is causing hydrological cycle intensification and permafrost thaw, with implications for flows of water, carbon, and energy from terrestrial biomes to coastal zones. To better understand the likely impacts of these changes, we used a hydrology model driven by meteorological data from atmospheric reanalysis and two global climate models for the period 1980–2100. The hydrology model accounts for soil freeze–thaw processes and was applied across the pan-Arctic drainage basin. The simulations point to greater changes over northernmost areas of the basin underlain by permafrost and to the western Arctic. An acceleration of simulated river discharge over the recent past is commensurate with trends drawn from observations and reported in other studies. Between early-century (2000–2019) and late-century (2080–2099) periods, the model simulations indicate an increase in annual total runoff of 17 %–25 %, while the proportion of runoff emanating from subsurface pathways is projected to increase by 13 %–30 %, with the largest changes noted in summer and autumn and across areas with permafrost. Most notably, runoff contributions to river discharge shift to northern parts of the Arctic Basin that contain greater amounts of soil carbon. Each season sees an increase in subsurface runoff; spring is the only season where surface runoff dominates the rise in total runoff, and summer experiences a decline in total runoff despite an increase in the subsurface component. The greater changes that are seen in areas where permafrost exists support the notion that increased soil thaw is shifting hydrological contributions to more subsurface flow. The manifestations of warming, hydrological cycle intensification, and permafrost thaw will impact Arctic terrestrial and coastal environments through altered river flows and the materials they transport.

     
    more » « less
  5. Abstract. River erosion affects the carbon cycle and thus climate by exporting terrigenous carbon to seafloor sediment and by nourishing CO2-consuming marine life. The Yukon River–Bering Sea system preserves rare source-to-sink records of these processes across profound changes in global climate during the past 5 million years (Ma). Here, we expand the terrestrial erosion record by dating terraces along the Charley River, Alaska, and explore linkages among previously published Yukon Rivertributary incision chronologies and Bering Sea sedimentation. Cosmogenic26Al/10Be isochron burial ages of Charley River terraces match previously documented central Yukon River tributary incision from 2.6 to 1.6 Ma during Pliocene–Pleistocene glacial expansion, and at 1.1 Ma during the 1.2–0.7 Ma Middle Pleistocene climate transition. Bering Sea sediments preserve 2–4-fold rate increases of Yukon River-derived continental detritus, terrestrial and marine organic carbon, and silicate microfossil deposition at 2.6–2.1 and 1.1–0.8 Ma. These tightly coupled records demonstrate elevated terrigenous nutrient and carbon export and concomitant Bering Sea productivity in response to climate-forced Yukon River incision. Carbon burial related to accelerated terrestrial erosion may contribute to CO2 drawdown across the Pliocene–Pleistocene and Middle Pleistocene climate transitions observed in many proxy records worldwide. 
    more » « less