The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well‐poised for the next generation of closed‐loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on‐tooth tattoos, skin‐mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real‐time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self‐regulating closed‐loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
- Award ID(s):
- 2322879
- PAR ID:
- 10444838
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 23
- Issue:
- 16
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 7057
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Monitoring glucose levels is critical for effective diabetes management. Continuous glucose monitoring devices estimate interstitial glucose levels and provide alerts for glycemic excursions. However, they are expensive and invasive. Therefore, low-cost, noninvasive alternatives are useful for patients with diabetes. In this article, we explore electrocardiogram signals as a potential alternative to detecting glycemic excursions by extracting intrabeat (beat-morphology) and inter-beat (heart rate variability) information. Unlike prior methods that focused only on the standard clinical excursion thresholds (70 mg/dL for hypoglycemia, 180 mg/dL for hyperglycemia), our proposed approach trains independent machine learning models at various excursion thresholds, aggregating their outputs for a final prediction. This allows learning morphological patterns in the neighborhood of the standard excursion thresholds. Our personalized fusion models achieve an AUC of 75 % for hypoglycemia and 78% for hyperglycemia detection across patients, resulting in an average improvement of 4 % compared to the baseline models (trained using only standard clinical thresholds) for detecting glycemic excursions. We also find that combining morphology and HRV information outperforms using them individually (5 % for hypoglycemia and 6 % for hyperglycemia). The data used in this article was collected from 12 patients with type-1 diabetes, each monitored over a 14-day period at Texas Children’s Hospital, Houston. The results indicate that a combination of morphological and HRV features is essential for noninvasive detection of glycemic excursions. Also, morphological changes can happen at varying glucose levels for different patients and capturing these changes provide valuable information that leads to improved prediction performance for detecting glycemic excursions.more » « less
-
Background: Monitoring glucose excursions is important in diabetes management. This can be achieved using continuous glucose monitors (CGMs). However, CGMs are expensive and invasive. Thus, alternative low-cost noninvasive wearable sensors capable of predicting glycemic excursions could be a game changer to manage diabetes. Methods: In this article, we explore two noninvasive sensor modalities, electrocardiograms (ECGs) and accelerometers, collected on five healthy participants over two weeks, to predict both hypoglycemic and hyperglycemic excursions. We extract 29 features encompassing heart rate variability features from the ECG, and time- and frequency-domain features from the accelerometer. We evaluated two machine-learning approaches to predict glycemic excursions: a classification model and a regression model. Results: The best model for both hypoglycemia and hyperglycemia detection was the regression model based on ECG and accelerometer data, yielding 76% sensitivity and specificity for hypoglycemia and 79% sensitivity and specificity for hyperglycemia. This had an improvement of 5% in sensitivity and specificity for both hypoglycemia and hyperglycemia when compared with using ECG data alone. Conclusions: Electrocardiogram is a promising alternative not only to detect hypoglycemia but also to predict hyperglycemia. Supplementing ECG data with contextual information from accelerometer data can improve glucose prediction.more » « less
-
Abstract Development of reliable glucose sensors for noninvasive monitoring without interruption or limiting users' mobility is highly desirable, especially for diabetes diagnostics, which requires routine/long‐term monitoring. However, their applications are largely limited by the relatively poor stability. Herein, a porous membrane is synthesized for effective enzyme immobilization and it is robustly anchored to the modified nanotextured electrode solid contacts, so as to realize glucose sensors with significantly enhanced sensing stability and mechanical robustness. To the best of our knowledge, this is the first report of utilizing such nanoporous membranes for electrochemical sensor applications, which eliminates enzyme escape and provides a sufficient surface area for molecular/ion diffusion and interactions, thus ensuring the sustainable catalytic activities of the sensors and generating reliable measureable signals during noninvasive monitoring. The as‐assembled nanostructured glucose sensors demonstrate reliable long‐term stable monitoring with a minimal response drift for up to 20 h, which delivers a remarkable enhancement. Moreover, they can be integrated into a microfluidic sensing patch for noninvasive sweat glucose monitoring. The as‐synthesized nanostructured glucose sensors with remarkable stability can inspire developments of various enzymatic biosensors for reliable noninvasive composition analysis and their ultimate applications in predictive clinical diagnostics, personalized health‐care monitoring, and chronic diseases management.
-
Abstract Diabetes is one of the most pressing healthcare challenges facing society. Dysfunctional insulin signaling causes diabetes, leading to blood glucose instability and many associated complications. While the administration of exogenous insulin is then essential for achieving glucose control, issues with dosing accuracy and timing remain. Hydrogel‐based drug delivery systems have been broadly explored for controlled protein release, including for applications in long‐lasting and oral insulin delivery. More recently, efforts have focused on injectable hydrogels with glucose‐directed controlled release of insulin and glucagon, aiming for more autonomous and biomimetic approaches to blood glucose control. These materials typically use protein‐based sensing mechanisms or glucose binding by synthetic aryl boronates for glucose‐directed release. Despite advancements in this area, there remains a need for more precise timing of therapeutic availability to afford healthy blood glucose homeostasis, providing an opportunity for further research and innovation. This review summarizes the current state of hydrogel‐based delivery of insulin and glucagon, with insights into the potential benefits, future directions, and challenges that must be overcome to achieve clinical impact.