skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Improved Information-Theoretic Generalization Bounds for Distributed, Federated, and Iterative Learning
We consider information-theoretic bounds on the expected generalization error for statistical learning problems in a network setting. In this setting, there are K nodes, each with its own independent dataset, and the models from the K nodes have to be aggregated into a final centralized model. We consider both simple averaging of the models as well as more complicated multi-round algorithms. We give upper bounds on the expected generalization error for a variety of problems, such as those with Bregman divergence or Lipschitz continuous losses, that demonstrate an improved dependence of 1/K on the number of nodes. These “per node” bounds are in terms of the mutual information between the training dataset and the trained weights at each node and are therefore useful in describing the generalization properties inherent to having communication or privacy constraints at each node.  more » « less
Award ID(s):
1908308
PAR ID:
10444844
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Entropy
Volume:
24
Issue:
9
ISSN:
1099-4300
Page Range / eLocation ID:
1178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generalization error bounds are essential to understanding machine learning algorithms. This paper presents novel expected generalization error upper bounds based on the average joint distribution between the output hypothesis and each input training sample. Multiple generalization error upper bounds based on different information measures are provided, including Wasserstein distance, total variation distance, KL divergence, and Jensen-Shannon divergence. Due to the convexity of the information measures, the proposed bounds in terms of Wasserstein distance and total variation distance are shown to be tighter than their counterparts based on individual samples in the literature. An example is provided to demonstrate the tightness of the proposed generalization error bounds. 
    more » « less
  2. Proc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)
    Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently. 
    more » « less
  3. Various approaches have been developed to upper bound the generalization error of a supervised learning algorithm. However, existing bounds are often loose and lack of guarantees. As a result, they may fail to characterize the exact generalization ability of a learning algorithm.Our main contribution is an exact characterization of the expected generalization error of the well-known Gibbs algorithm (a.k.a. Gibbs posterior) using symmetrized KL information between the input training samples and the output hypothesis. Our result can be applied to tighten existing expected generalization error and PAC-Bayesian bounds. Our approach is versatile, as it also characterizes the generalization error of the Gibbs algorithm with data-dependent regularizer and that of the Gibbs algorithm in the asymptotic regime, where it converges to the empirical risk minimization algorithm. Of particular relevance, our results highlight the role the symmetrized KL information plays in controlling the generalization error of the Gibbs algorithm. 
    more » « less
  4. Interactive proof systems allow a resource-bounded verifier to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee that the prover can only convince the verifier of true statements. In the context of centralized computation, a celebrated result shows that interactive proofs are extremely powerful, allowing polynomial-time verifiers to decide any language in PSPACE. In this work we initiate the study of interactive distributed proofs: a network of nodes interacts with a single untrusted prover, who sees the entire network graph, to decide whether the graph satisfies some property. We focus on the communication cost of the protocol — the number of bits the nodes must exchange with the prover and each other. Our model can also be viewed as a generalization of the various models of “distributed NP” (proof labeling schemes, etc.) which received significant attention recently: while these models only allow the prover to present each network node with a string of advice, our model allows for back-and-forth interaction. We prove both upper and lower bounds for the new model. We show that for some problems, interaction can exponentially decrease the communication cost compared to a non-interactive prover, but on the other hand, some problems retain non-trivial cost even with interaction. 
    more » « less
  5. Colijn and Plazzotta (2018) [1] described a bijective scheme for associating the unlabeled bifurcating rooted trees with the positive integers. In mathematical and biological applications of unlabeled rooted trees, however, nodes of rooted trees are sometimes multifurcating rather than bifurcating. Building on the bijection between the unlabeled bifurcating rooted trees and the positive integers, we describe bijective schemes for associating the unlabeled multifurcating rooted trees with the positive integers. We devise bijections with the positive integers for a set of trees in which each non-leaf node has exactly k child nodes, and for a set of trees in which each non-leaf node has at most k child nodes. The calculations make use of Macaulay's binomial expansion formula. The generalization to multifurcating trees can assist with the use of unlabeled trees for applications in evolutionary biology, such as the measurement of phylogenetic patterns of genetic lineages in pathogens. 
    more » « less