We study the group-fair obnoxious facility location problems from the mechanism design perspective where agents belong to different groups and have private location preferences on the undesirable locations of the facility. Our main goal is to design strategyproof mechanisms that elicit the true location preferences from the agents and determine a facility location that approximately optimizes several group-fair objectives. We first consider the maximum total and average group cost (group-fair) objectives. For these objectives, we propose deterministic mechanisms that achieve 3-approximation ratios and provide matching lower bounds. We then provide the characterization of 2-candidate strategyproof randomized mechanisms. Leveraging the characterization, we design randomized mechanisms with improved approximation ratios of 2 for both objectives. We also provide randomized lower bounds of 5/4 for both objectives. Moreover, we investigate intergroup and intragroup fairness (IIF) objectives, addressing fairness between groups and within each group. We present a mechanism that achieves a 4-approximation for the IIF objectives and provide tight lower bounds. 
                        more » 
                        « less   
                    This content will become publicly available on June 5, 2026
                            
                            Group Fairness in Multi-period Mobile Facility Location Problems
                        
                    
    
            We study the group-fair multi-period mobile facility location problems, where agents from different groups are located on a real line and arrive in different periods. Our goal is to locate k mobile facilities at each period to serve the arriving agents in order to minimize the maximum total group-fair cost and the maximum average group-fair cost objectives that measure the costs or distances of groups of agents to their corresponding facilities across all periods. We first consider the problems from the algorithmic perspective for both group-fair cost objectives. We then consider the problems from the mechanism design perspective, where the agents' locations and arrival periods are private. For both objectives, we design deterministic strategyproof mechanisms to elicit the agents' locations and arrival periods truthfully while optimizing the group-fair cost objectives and show that our mechanisms have almost tight bounds on the approximation ratios for certain periods and settings. Finally, we discuss the extensions of our results to the online setting where agent arrival information is only known at each period. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10611349
- Publisher / Repository:
- International Foundation for Autonomous Agents and Multiagent Systems
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We study the k-facility location games with optional preferences on the line. In the games, each strategic agent has a public location preference on the k facility locations and a private optional preference on the preferred/acceptable set of facilities out of the k facilities. Our goal is to design strategyproof mechanisms to elicit agents’ optional preferences and locate k facilities to minimize the social or maximum cost of agents based on their facility preferences and public agent locations. We consider two variants of the facility location games with optional preferences: the Min variant and the Max variant where the agent’s cost is defined as their distance to the closest acceptable facility and the farthest acceptable facility, respectively. For the Min variant, we present two deterministic strategyproof mechanisms to minimize the maximum cost and social cost with k ≥ 3 facilities, achieving approximation ratios of 3 and 2n+1 respectively. We complement the results by establishing lower bounds of 3/2 and n/4 for the approximation ratios achievable by any deterministic strategyproof mechanisms for the maximum cost and social cost, respectively. We then improve our results in a special setting of the Min variant where there are exactly three facilities and present two deterministic strategyproof mechanisms to minimize the maximum cost and social cost. For the Max variant, we present an optimal deterministic strategyproof mechanism for the maximum cost and a k-approximation deterministic strategyproof mechanism for the social cost.more » « less
- 
            We study the facility location problems (FLPs) with altruistic agents who act to benefit others in their affiliated groups. Our aim is to design mechanisms that elicit true locations from the agents in different overlapping groups and place a facility to serve agents to approximately optimize a given objective based on agents' costs to the facility. Existing studies of FLPs consider myopic agents who aim to minimize their own costs to the facility. We mainly consider altruistic agents with well-motivated group costs that are defined over costs incurred by all agents in their groups. Accordingly, we define Pareto strategyproofness to account for altruistic agents and their multiple group memberships with incomparable group costs. We consider mechanisms satisfying this strategyproofness under various combinations of the planner's objectives and agents' group costs. For each of these settings, we provide upper and lower bounds of approximation ratios of the mechanisms satisfying Pareto strategyproofness.more » « less
- 
            We study a variation of facility location problems (FLPs) that aims to improve the accessibility of agents to the facility within the context of mechanism design without money. In such a variation, agents have preferences on the ideal locations of the facility on a real line, and the facility’s location is fixed in advance where (re)locating the facility is not possible due to various constraints (e.g., limited space and construction costs). To improve the accessibility of agents to facilities, existing mechanism design literature in FLPs has proposed to structurally modify the real line (e.g., by adding a new interval) or provide shuttle services between two points when structural modifications are not possible. In this paper, we focus on the latter approach and propose to construct an accessibility range to extend the accessibility of the facility. In the range, agents can receive accommodations (e.g., school buses, campus shuttles, or pickup services) to help reach the facility. Therefore, the cost of each agent is the distance from their ideal location to the facility (possibility) through the range. We focus on designing strategyproof mechanisms that elicit true ideal locations from the agents and construct accessibility ranges (intervals) to approximately minimize the social cost or the maximum cost of agents. For both social and maximum costs, we design group strategyproof mechanisms and strong group strategyproof mechanisms with (asymptotically) tight bounds on the approximation ratios.more » « less
- 
            We consider a social choice setting with agents that are partitioned into disjoint groups, and have metric preferences over a set of alternatives. Our goal is to choose a single alternative aiming to optimize various objectives that are functions of the distances between agents and alternatives in the metric space, under the constraint that this choice must be made in a distributed way: The preferences of the agents within each group are first aggregated into a representative alternative for the group, and then these group representatives are aggregated into the final winner. Deciding the winner in such a way naturally leads to loss of efficiency, even when complete information about the metric space is available. We provide a series of (mostly tight) bounds on the distortion of distributed mechanisms for variations of well-known objectives, such as the (average) total cost and the maximum cost, and also for new objectives that are particularly appropriate for this distributed setting and have not been studied before.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
