Abstract This paper deals with the derivation of the mean‐field limit for multi‐agent systems on a large class of sparse graphs. More specifically, the case of non‐exchangeable multi‐agent systems consisting of non‐identical agents is addressed. The analysis does not only involve PDEs and stochastic analysis but also graph theory through a new concept of limits of sparse graphs (extended graphons) that reflect the structure of the connectivities in the network and has critical effects on the collective dynamics. In this article some of the main restrictive hypothesis in the previous literature on the connectivities between the agents (dense graphs) and the cooperation between them (symmetric interactions) are removed.
more »
« less
Gradient Flows on Graphons: Existence, Convergence, Continuity Equations
Wasserstein gradient flows on probability measures have found a host of applications in various optimization problems. They typically arise as the continuum limit of exchangeable particle systems evolving by some mean-field interaction involving a gradient-type potential. However, in many problems, such as in multi-layer neural networks, the so-called particles are edge weights on large graphs whose nodes are exchangeable. Such large graphs are known to converge to continuum limits called graphons as their size grows to infinity. We show that the Euclidean gradient flow of a suitable function of the edge weights converges to a novel continuum limit given by a curve on the space of graphons that can be appropriately described as a gradient flow or, more technically, a curve of maximal slope. Several natural functions on graphons, such as homomorphism functions and the scalar entropy, are covered by our setup, and the examples have been worked out in detail.
more »
« less
- Award ID(s):
- 2134012
- PAR ID:
- 10444892
- Date Published:
- Journal Name:
- Journal of theoretical probability
- ISSN:
- 0894-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider heterogeneously interacting diffusive particle systems and their large population limit. The interaction is of mean field type with weights characterized by an underlying graphon. A law of large numbers result is established as the system size increases and the underlying graphons converge. The limit is given by a graphon mean field system consisting of independent but heterogeneous nonlinear diffusions whose probability distributions are fully coupled. Well-posedness, continuity and stability of such systems are provided. We also consider a not-so-dense analogue of the finite particle system, obtained by percolation with vanishing rates and suitable scaling of interactions. A law of large numbers result is proved for the convergence of such systems to the corresponding graphon mean field system.more » « less
-
We describe a 3/2-approximation algorithm, \lse, for computing a b-edgecover of minimum weight in a graph with weights on the edges. The b-edgecover problem is a generalization of the better-known Edge Cover problem in graphs, where the objective is to choose a subset C of edges in the graph such that at least a specified number b(v) of edges in C are incident on each vertex v. In the weighted b-edgecover problem, we minimize the sum of the weights of the edges in C. We prove that the Locally Subdominant edge (LSE) algorithm computes the same b-edge cover as the one obtained by the Greedy algorithm for the problem. However, the Greedy algorithm requires edges to be sorted by their effective weights, and these weights need to be updated after each iteration. These requirements make the Greedy algorithm sequential and impractical for massive graphs. The LSE algorithm avoids the sorting step, and is amenable for parallelization. We implement the algorithm on a serial machine and compare its performance against a collection of approximation algorithms for the b-edge cover problem. Our results show that the algorithm is 3 to 5 times faster than the Greedy algorithm on a serial processor. The approximate edge covers obtained by the LSE algorithm have weights greater by at most 17% of the optimal weight for problems where we could compute the latter. We also investigate the relationship between the b-edge cover and the b-matching problems, show that the latter has a faster implementation since edge weights are static in this algorithm, and obtain a heuristic solution for the former from the latter.more » « less
-
We study first passage percolation (FPP) with stationary edge weights on Cayley graphs of finitely generated virtually nilpotent groups. Previous works of Benjamini-Tessera and Cantrell-Furman show that scaling limits of such FPP are given by Carnot-Carathéodory metrics on the associated graded nilpotent Lie group. We show a converse, i.e. that for any Cayley graph of a finitely generated nilpotent group, any Carnot-Carathéodory metric on the associated graded nilpotent Lie group is the scaling limit of some FPP with stationary edge weights on that graph. Moreover, for any Cayley graph of any finitely generated virtually nilpotent group, any conjugation-invariant metric is the scaling limit of some FPP with stationary edge weights on that graph. We also show that the conjugation-invariant condition is also a necessary condition in all cases where scaling limits are known to exist.more » « less
-
Call a hereditary family F of graphs strongly persistent if there exists a graphon W such that in all subgraphons W0 of W , F is precisely the class of finite graphs that have positive density in W0. Our first result is a complete characterization of the hereditary families of graphs that are strongly persistent as precisely those that are closed under substitutions. We call graphons with the self-similarity property above weakly random. A hereditary family F is said to have the weakly random Erdos–Hajnal property (WR) if every graphon that is a limit of graphs in F has a weakly random subgraphon. Among families of graphs that are closed under substitutions, we completely characterize the families that belong to WR as those with “few” prime graphs. We also extend some of the results above to structures in finite relational languages by using the theory of theons.more » « less
An official website of the United States government

