skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Testable flavored TeV-scale resonant leptogenesis with MeV-GeV dark matter in a neutrinophilic two-Higgs-doublet model
We explore flavored resonant leptogenesis embedded in a neutrinophilic two-Higgs-doublet model. Successful leptogenesis is achieved by the very mildly degenerate two heavier right-handed neutrinos (RHNs) 𝑁2 and 𝑁3 with a level of only Δ⁢𝑀32/𝑀2∼𝒪⁡(0.1%–1%). The lightest RHN, with a MeV–GeV mass, lies below the sphaleron freeze-out temperature and is stable, serving as a dark matter candidate. The model enables TeV-scale leptogenesis while avoiding the extreme mass degeneracy typically plaguing conventional resonant leptogenesis. Baryon asymmetry, neutrino masses, and potentially even dark matter relic density can be addressed within a unified, experimentally testable framework.  more » « less
Award ID(s):
2412875 2112680
PAR ID:
10621469
Author(s) / Creator(s):
;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
111
Issue:
11
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a unified theory of inflation, neutrino mass, baryogenesis, and dark matter where global lepton number symmetry and its breaking play a crucial role. The basic idea is to use a lepton number carrying a complex scalar field as the inflaton as well as the field that implements Affleck-Dine (AD) leptogenesis. Dark matter is the massive Majoron which is a pseudo-Goldstone boson, resulting from the spontaneous breaking of lepton number symmetry supplemented by explicit lepton number violation needed to implement AD leptogenesis. The magnitude of the resulting nB/s in the model is related to the mass of the pseudo-Goldstone dark matter, connecting two apparently disconnected cosmological observations. An inverse seesaw mechanism with lepton number breaking at low scale is crucial to prevent washout of the lepton asymmetry during the universe’s evolution. The model seems to provide an economical solution to several puzzles of the standard model of particle physics and cosmology in one stroke. 
    more » « less
  2. Affleck-Dine (AD) mechanism for leptogenesis involves the cosmological evolution of a complex scalar field (AD field) that carries non-zero lepton number. We show how explicit lepton number breaking terms, which involve the AD field needed to implement this scenario combined with fermionic WIMP dark matter, can generate neutrino mass at the one loop level, thus providing a unified framework for solving four major puzzles of the standard model i.e. inflation, baryogenesis, dark matter and neutrino mass. We discuss some phenomenological implications of this model. 
    more » « less
  3. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less
  4. A bstract We introduce Super-Resonant Dark Matter , a model of self-interacting dark matter based on the low energy effective theory of supersymmetric QCD. The structure of the theory ensures a resonant enhancement of the self-interactions of the low energy mesons, since their mass ratio is set by the number of colors and flavors. The velocity dependence of the resonantly enhanced self-interactions allows such theories to accommodate puzzles in small scale structure that arise from dark matter halos of different sizes. The dark matter mass is then predicted to be around 3–4 MeV, with its abundance set by freeze-in via a kinetically mixed dark photon. 
    more » « less
  5. Context. We make rotation curve fits to test the superfluid dark matter model. Aims. In addition to verifying that the resulting fits match the rotation curve data reasonably well, we aim to evaluate how satisfactory they are with respect to two criteria, namely, how reasonable the resulting stellar mass-to-light ratios are and whether the fits end up in the regime of superfluid dark matter where the model resembles modified Newtonian dynamics (MOND). Methods. We fitted the superfluid dark matter model to the rotation curves of 169 galaxies in the SPARC sample. Results. We found that the mass-to-light ratios obtained with superfluid dark matter are generally acceptable in terms of stellar populations. However, the best-fit mass-to-light ratios have an unnatural dependence on the size of the galaxy in that giant galaxies have systematically lower mass-to-light ratios than dwarf galaxies. A second finding is that the superfluid often fits the rotation curves best in the regime where the superfluid’s force cannot resemble that of MOND without adjusting a boundary condition separately for each galaxy. In that case, we can no longer expect superfluid dark matter to reproduce the phenomenologically observed scaling relations that make MOND appealing. If, on the other hand, we consider only solutions whose force approximates MOND well, then the total mass of the superfluid is in tension with gravitational lensing data. Conclusions. We conclude that even the best fits with superfluid dark matter are still unsatisfactory for two reasons. First, the resulting stellar mass-to-light ratios show an unnatural trend with galaxy size. Second, the fits do not end up in the regime that automatically resembles MOND, and if we force the fits to do so, the total dark matter mass is in tension with strong lensing data. 
    more » « less