The objective of this paper is to study the optimal consumption and portfolio choice problem of risk-controlled investors who strive to maximize total expected discounted utility of both consumption and terminal wealth. Risk is measured by the variance of terminal wealth, which introduces a nonlinear function of the expected value into the control problem. The control problem presented is no longer a standard stochastic control problem but rather, a mean field-type control problem. The optimal portfolio and consumption rules are obtained explicitly. Numerical results shed light on the importance of controlling variance risk. The optimal investment policy is nonmyopic, and consumption is not sacrificed.
more »
« less
Inter‐temporal mutual‐fund management
Abstract Traditionally, mutual funds are mostly managed via an ad hoc approach, namely a terminal‐only optimization. Due to the intricate mathematical complexity of a continuum of constraints imposed, effects of the inter‐temporal reward for the managers are essentially neglected in the previous literature. For instance, the inter‐temporal optimal investment problem from the fund manager's viewpoint, who earns proportional management fees continuously (a golden rule in practice), has been outstanding for long. This article completely resolves this challenging question especially under generic running and terminal utilities, via the Dynamic Programming Principle which leads to a nonconventional, highly nonlinear HJB equation. We develop an original mathematical analysis to establish the unique existence of the classical solution of the primal problem. Further numerical calibrations and simulations for both the portfolio weight and the value functions illustrate the robustness of the optimal portfolio towards the manager's risk attitude, which allows different managers with various risk characteristics to sell essentially the same investment vehicle. Simulation studies also indicate that the policy of charging a substantial terminal‐only management fee can be replaced by another one with only a negligible amount over the interim period, which substantially reduces the total management fee paid by the clients without lowering the manager's satisfaction at all; this last observation echoes the magic of the alchemy of finance.
more »
« less
- Award ID(s):
- 1905449
- PAR ID:
- 10444947
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Mathematical Finance
- Volume:
- 32
- Issue:
- 3
- ISSN:
- 0960-1627
- Page Range / eLocation ID:
- p. 825-877
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many cities struggle with financing their infrastructure projects. When decision makers cannot fully capture the benefits of their investments, there is a risk of underinvestment. Hong Kong’s transit operator created a model where it not only collects fare revenues but also engages in property management, leveraging the positive effects of public transport on nearby property values. In the article titled “Monetizing Positive Externalities to Mitigate the Infrastructure Underinvestment Problem,” the authors present a stochastic Stackelberg game of timing to examine the reasoning behind this approach. The issue is complex because the operator faces a two-dimensional optimal stopping problem that cannot be simplified by changing the numéraire. The authors determine the operator’s optimal investment strategy through the use of a “penalized problem” and provide comparative statics. They also identify the conditions in which capitalizing on positive externalities can encourage infrastructure investment. Other management challenges share similar structures.more » « less
-
Abstract We develop a continuous‐time control approach to optimal trading in a Proof‐of‐Stake (PoS) blockchain, formulated as a consumption‐investment problem that aims to strike the optimal balance between a participant's (or agent's) utility from holding/trading stakes and utility from consumption. We present solutions via dynamic programming and the Hamilton–Jacobi–Bellman (HJB) equations. When the utility functions are linear or convex, we derive close‐form solutions and show that the bang‐bang strategy is optimal (i.e., always buy or sell at full capacity). Furthermore, we bring out the explicit connection between the rate of return in trading/holding stakes and the participant's risk‐adjusted valuation of the stakes. In particular, we show when a participant is risk‐neutral or risk‐seeking, corresponding to the risk‐adjusted valuation being a martingale or a sub‐martingale, the optimal strategy must be to either buy all the time, sell all the time, or first buy then sell, and with both buying and selling executed at full capacity. We also propose a risk‐control version of the consumption‐investment problem; and for a special case, the “stake‐parity” problem, we show a mean‐reverting strategy is optimal.more » « less
-
The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellman's principle recently proposed in [23] applied to two particular dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated via numerical examples that include, in particular, the computation of the intermediate mean-risk efficient frontiers.more » « less
-
We consider a variation on the classical finance problem of optimal portfolio design. In our setting, a large population of consumers is drawn from some distribution over risk tolerances, and each consumer must be assigned to a portfolio of lower risk than her tolerance. The consumers may also belong to underlying groups (for instance, of demographic properties or wealth), and the goal is to design a small number of portfolios that are fair across groups in a particular and natural technical sense. Our main results are algorithms for optimal and near-optimal portfolio design for both social welfare and fairness objectives, both with and without assumptions on the underlying group structure. We describe an efficient algorithm based on an internal two-player zero-sum game that learns near-optimal fair portfolios ex ante and show experimentally that it can be used to obtain a small set of fair portfolios ex post as well. For the special but natural case in which group structure coincides with risk tolerances (which models the reality that wealthy consumers generally tolerate greater risk), we give an efficient and optimal fair algorithm. We also provide generalization guarantees for the underlying risk distribution that has no dependence on the number of portfolios and illustrate the theory with simulation results.more » « less
An official website of the United States government
