Abstract Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.
more »
« less
Comparison of Biotite Elastic Properties Recovered by Spherical Nanoindentations and Atomistic Simulations — Influence of Nano‐Scale Defects in Phyllosilicates
Abstract Phyllosilicate minerals, due to their sheets structure and morphology, are known to cause anisotropy in bulk rock properties and make the bulk rock more compliant. Accurately characterizing the micromechanical behavior of phyllosilicate minerals from laboratory observations, which eventually translates to the bulk rock behavior, is still challenging due to their fine‐grained nature. Recent advances in atomistic simulations open the possibility of theoretically investigating such mineral mechanical behavior. We compare the elastic properties of biotites recovered by spherical nanoindentation with those predicted from density functional theory (DFT) simulations to investigate to what extent theoretical predictions reproduce actual phyllosilicate properties. Spherical nanoindentation was conducted using schist rocks from Poorman Formation, South Dakota, USA, to recover continuous indentation stress‐strain curves. Loading in the layer‐normal orientation shows an average indentation modulus () of about 35 GPa, while loading in the layer‐parallel orientation gives a higher average of about 95 GPa. To facilitate comparison, the elastic stiffness constants (cij) determined from DFT were converted to indentation modulus () using solutions proposed in this study. The majority of the nanoindentation modulus results are below the values inferred from the simulation results representing ideal defect‐free minerals. We suggest that crystal defects present at the nano‐scale, potentially ripplocations, are the dominant cause of the lower indentation modulus recovered from nanoindentation compared to those inferred from DFT simulations. Results highlight the importance of acknowledging the defects that exist down to the nano‐scale as it modifies the mechanical properties of phyllosilicates compared to its pure defect‐free form.
more »
« less
- PAR ID:
- 10444995
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 126
- Issue:
- 8
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The UV finiteness found in calculations of the 4‐point amplitude insupergravity at loop orderhas not been explained, which motivates our study of the relevant superspace invariants and on‐shell superamplitudes for bothand. The local 4‐point superinvariants forare expected to have nonlinear completions whose 6‐point amplitudes have non‐vanishing SSL's (soft scalar limits), violating the behavior required of Goldstone bosons. For, we find atthat local 6‐point superinvariant and superamplitudes, which might cancel these SSL's, do not exist. This rules out the candidate 4‐point counterterm and thus gives a plausible explanation of the observedfiniteness. However, atwe construct a local 6‐point superinvariant with non‐vanishing SSL's, so the SSL argument does not explain the observedUV finiteness. Forsupergravity there are no 6‐point invariants at eitheror 4, so the SSL argument predicts UV finiteness.more » « less
-
Abstract Raman scattering is performed on Fe3GeTe2(FGT) at temperatures from 8 to 300 K and under pressures from the ambient pressure to 9.43 GPa. Temperature‐dependent and pressure‐dependent Raman spectra are reported. The results reveal respective anomalous softening and moderate stiffening of the two Raman active modes as a result of the increase of pressure. The anomalous softening suggests anharmonic phonon dynamics and strong spin–phonon coupling. Pressure‐dependent density functional theory and phonon calculations are conducted and used to study the magnetic properties of FGT and assign the observed Raman modes,and. The calculations proved the strong spin–phonon coupling for themode. In addition, a synergistic interplay of pressure‐induced reduction of spin exchange interactions and spin–orbit coupling effect accounts for the softening of themode as pressure increases.more » « less
-
Abstract Using data from 186 stations belonging to the USArray Transportable Array, a three‐dimensional shear wave velocity model for the southeastern United States is constructed for the top 180 km by a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion computed from ambient noise and teleseismic earthquake data. The resulting shear wave velocity model and the crustal thickness and Vp/Vs () measurements show a clear spatial correspondence with major surficial geological features. The distinct low velocities observed in the depth range of 0–25 km beneath the eastern Gulf Coastal Plain reflect the thick layer of unconsolidated or poorly consolidated sediments atop the crystalline crust. The low(1.70–1.74) and slow lowermost crustal velocities observed beneath the eastern Southern Appalachian Mountains (including the Carolina Terrane and Inner Piedmont) relative to the adjacent Blue Ridge Mountains and Valley and Ridge can be interpreted by lower crustal delamination followed by relamination. The Osceola intrusive complex in the central Suwannee Terrane has similar crustal characteristics as the eastern Southern Appalachian Mountains and thus can similarly be attributed to crustal delamination/relamination processes. The Grenville Province and adjacent areas possess relatively highvalues which can be attributed to mafic intrusion associated with crustal extension in a recently recognized segments of the eastern arm of the Proterozoic Midcontinent Rift.more » « less
-
Abstract We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.more » « less
An official website of the United States government
