Abstract Enhancing tree diversity may be important to fostering resilience to drought‐related climate extremes. So far, little attention has been given to whether tree diversity can increase the survival of trees and reduce its variability in young forest plantations.We conducted an analysis of seedling and sapling survival from 34 globally distributed tree diversity experiments (363,167 trees, 168 species, 3744 plots, 7 biomes) to answer two questions: (1) Do drought and tree diversity alter the mean and variability in plot‐level tree survival, with higher and less variable survival as diversity increases? and (2) Do species that survive poorly in monocultures survive better in mixtures and do specific functional traits explain monoculture survival?Tree species richness reduced variability in plot‐level survival, while functional diversity (Rao's Q entropy) increased survival and also reduced its variability. Importantly, the reduction in survival variability became stronger as drought severity increased. We found that species with low survival in monocultures survived comparatively better in mixtures when under drought. Species survival in monoculture was positively associated with drought resistance (indicated by hydraulic traits such as turgor loss point), plant height and conservative resource‐acquisition traits (e.g. low leaf nitrogen concentration and small leaf size).Synthesis.The findings highlight: (1) The effectiveness of tree diversity for decreasing the variability in seedling and sapling survival under drought; and (2) the importance of drought resistance and associated traits to explain altered tree species survival in response to tree diversity and drought. From an ecological perspective, we recommend mixing be considered to stabilize tree survival, particularly when functionally diverse forests with drought‐resistant species also promote high survival of drought‐sensitive species.
more »
« less
Turgor loss point predicts survival responses to experimental and natural drought in tropical tree seedlings
Abstract Identifying key traits that can serve as proxies for species drought resistance is crucial for predicting and mitigating the effects of climate change in diverse plant communities. Turgor loss point (πtlp) is a recently emerged trait that has been linked to species distributions across gradients of water availability. However, a direct relationship between πtlpand species ability to survive drought has yet to be established for woody species. Using a manipulative field experiment to quantify species drought resistance (i.e., their survival response to drought), combined with measurements of πtlpfor 16 tree species, we show a negative relationship between πtlpand seedling drought resistance. Using long‐term forest plot data, we also show that πtlppredicts seedling survival responses to a severe El Niño‐related drought, although additional factors are clearly also important. Our study demonstrates that species with lower πtlpexhibit higher survival under both experimental and natural drought. These results provide a missing cornerstone in the assessment of the traits underlying drought resistance in woody species and strengthen πtlpas a proxy for evaluating which species will lose or win under projections of exacerbating drought regimes.
more »
« less
- Award ID(s):
- 1845403
- PAR ID:
- 10445037
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 103
- Issue:
- 6
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.Species with high resistance to embolisms (lowP50values) and higher safety margins () were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post‐hurricane growth) had high capacitance andP50values and low . During 26 yr of post‐hurricane recovery, we found a decrease in community‐weighted mean values for traits associated with greater drought resistance (leaf turgor loss point,P50, ) and an increase in capacitance, which has been linked with lower drought resistance.Hurricane damage favors slow‐growing, drought‐tolerant species, whereas post‐hurricane high resource conditions favor acquisitive, fast‐growing but drought‐vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.more » « less
-
Abstract Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site‐level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50values (< −2 MPa) are common across the wet and dry tropics. This high site‐level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.more » « less
-
Abstract Alterations in global climate via extreme precipitation will have broadscale implications on ecosystem functioning. The increased frequency of drought, coupled with heavy, episodic rainfall are likely to generate impacts on biotic and abiotic processes across aquatic and terrestrial ecosystems. Despite the demonstrated shifts in global precipitation, less is known how extreme precipitation interacts with biophysical factors to control future demographic processes, especially those sensitive to climate extremes such as organismal recruitment and survival. We utilized a field‐based precipitation manipulation experiment in 0.1 ha forest canopy openings to test future climate scenarios characterized by extreme precipitation on temperate tree seedling survival. The effects of planting seedbeds (undisturbed leaf litter/organic material vs. scarified, exposed mineral soils), seedling ontogeny, species, and functional traits were examined against four statistically defined precipitation scenarios. Results indicated that seedlings grown within precipitation treatments characterized by heavy, episodic rainfall preceded by prolonged drying responded similarly to drought treatments lacking episodic inputs. Moreover, among all treatment conditions tested, scarified seedbeds most strongly affected seedling survivorship (odds ratio 6.9). Compared with any precipitation treatment, the effect size (predicted probabilities) of the seedbed was more than twice as important in controlling seedling survivorship. However, the interaction between precipitation and seedbed resulted in a 27.9% improvement in survivorship for moisture‐sensitive species. Seedling sensitivity to moisture was variable among species, and most closely linked with functional traits such as seed mass. For instance, under dry moisture regimes, survivorship increased linearly with seed mass (log transformed; adjustedR2 = 0.72,p < 0.001), yet no relationship was apparent under wet moisture regimes. Although precipitation influenced survival, extreme rainfall events were not enough to offset moisture deficits nor provide a rescue effect under drought conditions. The relationships reported here highlight the importance of plant seedbeds and species (e.g., functional traits) as edaphic and biotic controls that modify the influence of extreme future precipitation on seedling survival in temperate forests. Finally, we demonstrated the biophysical factors that were most influential to early forest development and that may override the negative effects of increasingly variable precipitation. This work contributes to refinements of species distribution models and can inform reforestation strategies intended to maintain biodiversity and ecosystem function under increasing climate extremes.more » « less
-
Abstract Background and AimsUnderstanding shifts in the demographic and functional composition of forests after major natural disturbances has become increasingly relevant given the accelerating rates of climate change and elevated frequency of natural disturbances. Although plant demographic strategies are often described across a slow–fast continuum, severe and frequent disturbance events influencing demographic processes may alter the demographic trade-offs and the functional composition of forests. We examined demographic trade-offs and the shifts in functional traits in a hurricane-disturbed forest using long-term data from the Luquillo Forest Dynamics Plot (LFPD) in Puerto Rico. MethodsWe analysed information on growth, survival, seed rain and seedling recruitment for 30 woody species in the LFDP. In addition, we compiled data on leaf, seed and wood functional traits that capture the main ecological strategies for plants. We used this information to identify the main axes of demographic variation for this forest community and evaluate shifts in community-weighted means for traits from 2000 to 2016. Key ResultsThe previously identified growth–survival trade-off was not observed. Instead, we identified a fecundity–growth trade-off and an axis representing seedling-to-adult survival. Both axes formed dimensions independent of resprouting ability. Also, changes in tree species composition during the post-hurricane period reflected a directional shift from seedling and tree communities dominated by acquisitive towards conservative leaf economics traits and large seed mass. Wood specific gravity, however, did not show significant directional changes over time. ConclusionsOur study demonstrates that tree demographic strategies coping with frequent storms and hurricane disturbances deviate from strategies typically observed in undisturbed forests, yet the shifts in functional composition still conform to the expected changes from acquisitive to conservative resource-uptake strategies expected over succession. In the face of increased rates of natural and anthropogenic disturbance in tropical regions, our results anticipate shifts in species demographic trade-offs and different functional dimensions.more » « less
An official website of the United States government
