skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Limits of Homogenization: What Hydrological Dynamics can a Simple Model Represent at the Catchment Scale?
Abstract Large‐scale models often use a single grid to represent an entire catchment assuming homogeneity; the impacts of such an assumption on simulating evapotranspiration (ET) and streamflow remain poorly understood. Here, we compare hydrological dynamics at Shale Hills (PA, USA) using a complex model (spatially explicit, >500 grids) and a simple model (spatially implicit, two grids using “effective” parameters). We asked two questions:What hydrological dynamics can a simple model reproduce at the catchment scale? What processes does it miss by ignoring spatial details?Results show the simple model can reproduce annual runoff ratios and ET, daily discharge peaks (e.g., storms, floods) but not discharge minima (e.g., droughts) under dry conditions. Neither can it reproduce different streamflow from the two sides of the catchment with distinct land surface characteristics. The similar annual runoff ratios between the two models indicate spatial details are not as important as climate in reproducing annual scale ET and discharge partitioning. Most of the calibrated parameters in the simple model are within the ranges in the complex model, except that effective porosity has to be reduced to 40% of the average porosity from the complex model. The form of the storage‐discharge relationship is similar. The effective porosity in the simple model however represents the dynamic and mobile water storage in the effective drainage area of the complex model that connects to the stream and contributes to high streamflow; it does not represent the passive, immobile water storage in the often disconnected uphill areas. This indicates that an additional uphill functioning unit is needed in the simple model to simulate the full spectrum of high‐low streamflow dynamics in natural catchments.  more » « less
Award ID(s):
0725019 1239285 1331726
PAR ID:
10445065
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
6
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent studies have demonstrated that compartmentalized pools of water preferentially supply either plant transpiration (poorly mobile water) or streamflow and groundwater (highly mobile water) in some catchments, a phenomenon referred to as ecohydrologic separation. The omission of processes accounting for ecohydrologic separation in standard applications of hydrological models is expected to influence estimates of water residence times and plant water availability. However, few studies have tested this expectation or investigated how ecohydrologic separation alters interpretations of stores and fluxes of water within a catchment. In this study, we compare two rainfall‐runoff models that integrate catchment‐scale representations of transport, one that incorporates ecohydrologic separation and one that does not. The models were developed for a second‐order watershed at the H.J. Andrews Experimental Forest (Oregon, USA), the site where ecohydrologic separation was first observed, and calibrated against multiple years of stream discharge and chloride concentration. Model structural variations caused mixed results for differences in calibrated parameters and differences in storage between reservoirs. However, large differences in catchment storage volumes and fluxes arise when considering only mobile water. These changes influence interpreted residence times for streamflow‐generating water, demonstrating the importance of ecohydrologic separation in catchment‐scale water and solute transport. 
    more » « less
  2. null (Ed.)
    Long-term streamflow datasets inevitably include gaps, which must be filled to allow estimates of runoff and ultimately catchment water budgets. Uncertainty introduced by filling gaps in discharge records is rarely, if ever, reported. We characterized the uncertainty due to streamflow gaps in a reference watershed at the Hubbard Brook Experimental Forest (HBEF) from 1996 to 2009 by simulating artificial gaps of varying duration and flow rate, with the objective of quantifying their contribution to uncertainty in annual streamflow. Gaps were filled using an ensemble of regressions relating discharge from nearby streams, and the predicted flow was compared to the actual flow. Differences between the predicted and actual runoff increased with both gap length and flow rate, averaging 2.8% of the runoff during the gap. At the HBEF, the sum of gaps averaged 22 days per year, with the lowest and highest annual uncertainties due to gaps ranging from 1.5 mm (95% confidence interval surrounding mean runoff) to 21.1 mm. As a percentage of annual runoff, uncertainty due to gap filling ranged from 0.2–2.1%, depending on the year. Uncertainty in annual runoff due to gaps was small at the HBEF, where infilling models are based on multiple similar catchments in close proximity to the catchment of interest. The method demonstrated here can be used to quantify uncertainty due to gaps in any long-term streamflow data set, regardless of the gap-filling model applied. 
    more » « less
  3. Abstract Quantitative estimations of ecohydrological water partitioning into evaporation and transpiration remains mostly based on plot‐scale investigations that use well‐instrumented, small‐scale experimental catchments in temperate regions. Here, we attempted to upscale and adapt the conceptual tracer‐aided ecohydrology model STARRtropics to simulate water partitioning, tracer, and storage dynamics over daily time steps and a 1‐km grid larger‐scale (2565 km2) in a sparsely instrumented tropical catchment in Costa Rica. The model was driven by bias‐corrected regional climate model outputs and was simultaneously calibrated against daily discharge observations from 2 to 30 years at four discharge gauging stations and a 1‐year, monthly streamwater isotope record of 46 streams. The overall model performance for the best discharge simulations ranged in KGE values from 0.4 to 0.6 and correlation coefficients for streamflow isotopes from 0.3 to 0.45. More importantly, independent model‐derived transpiration estimates, point‐scale residence time estimates, and measured groundwater isotopes showed reasonable model performance and simulated spatial and temporal patterns pointing towards an overall model realism at the catchment scale over reduced performance in the headwaters. The simulated catchment system was dominated by low‐seasonality and high precipitation inputs and a marked topographical gradient. Climatic drivers overrode smaller, landcover‐dependent transpiration fluxes giving a seemingly homogeneous rainfall‐runoff dominance likely related to model input bias of rainfall isotopes, oversimplistic Potential Evapotranspiration (PET) estimates and averaged Leaf Area Index (LAI). Topographic influences resulted in more dynamic water and tracer fluxes in the headwaters that averaged further downstream at aggregated catchment scales. Modelled headwaters showed greater storage capacity by nearly an order of magnitude compared to the lowlands, which also favoured slightly longer residence times (>250 days) compared to superficially well‐connected groundwater contributing to shorter streamflow residence times (<150 days) in the lowlands. Our findings confirm that tracer‐aided ecohydrological modelling, even in the data‐scarce Tropics, can help gain a first, but crucial approximation of spatio‐temporal dynamics of how water is partitioned, stored and transported beyond the experimental catchment scale of only a few km2
    more » « less
  4. Intermittent headwater streams are highly vulnerable to environmental disturbances, but effective management of these water resources requires first understanding the mechanisms that generate streamflow. This study examined mechanisms governing streamflow generation in merokarst terrains, a type of carbonate terrain that covers much of the central United States yet has received relatively little attention in hydrological studies. We used high-frequency sampling of precipitation, stream water, and groundwater during summer 2021 to quantify the contributions to streamflow from different water sources and characterize their short-term dynamics in a 1.2 km 2 merokarst catchment at the Konza Prairie Biological Station (Kansas, USA). Mixing calculations using stable water isotopes and dissolved ions indicate that streamflow is overwhelmingly contributed by groundwater discharge from thin (1–2 m) limestone aquifers, even during wet periods, when soil water and surface runoff are generally expected to be more important. Relationships between hydraulic heads in the aquifers and their contributions to streamflow differed early in the study period compared to later, after a major storm occurred, suggesting there is a critical threshold of groundwater storage that the bedrock needs to attain before fully connecting to the stream. Furthermore, contributions from each limestone unit varied during the study period in response to differences in their hydrogeological properties and/or their stratigraphic position, which in turn impacted both the length of streamflow and its composition. Taken together, we interpret that the subsurface storage threshold and variation in aquifer properties are major controllers of flow intermittency in merokarst headwater catchments. 
    more » « less
  5. Abstract. Catchment-scale hydrological studies on drylands are lacking because of thescarcity of consistent data: observations are often available at the plotscale, but their relevance for the catchment scale remains unclear. Adatabase of 24 years of stream gauge discharge and homogeneoushigh-resolution radar data over the eastern Mediterranean allows us to describe the properties of floods over catchments spanning from desert toMediterranean climates, and we note that the data set is mostly of moderateintensity floods. Comparing two climatic regions, desert and Mediterranean,we can better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unitpeak discharges and runoff coefficients are comparable. Rain depth andantecedent conditions are the most important properties to shape floodresponse in Mediterranean areas. In deserts, instead, storm core propertiesdisplay a strong correlation with unit peak discharge and, to a lesser extent,with runoff coefficient. In this region, an inverse correlation with meancatchment annual precipitation suggests also a strong influence of localsurface properties. Preliminary analyses suggest that floods in catchmentswith wet headwater and dry lower section are more similar to desertcatchments, with a strong influence of storm core properties on runoffgeneration. 
    more » « less