skip to main content


Title: Westward‐Propagating Moisture Mode Over the Tropical Western Hemisphere
Abstract

A westward‐propagating Rossby‐like wave signal is found to explain a large fraction of the intraseasonal variance in cloud brightness over the Western Hemisphere. A series of diagnostic criteria suggest that this wave is a moisture mode: its moisture anomalies dominate the distribution of moist static energy (MSE) and are in phase with the precipitation anomalies; and the thermodynamic equation obeys the weak temperature gradient approximation. The wave propagates westward due to zonal moisture advection by the mean flow and is maintained by radiative heating and meridional moisture advection. These properties compare favorably with the westward propagating Rossby mode in an equatorial beta‐plane model with prognostic moisture, mean meridional moisture gradient, and mean zonal wind. These results underscore the importance of water vapor in the dynamics of slowly evolving tropical systems, and the limitations of dry shallow water theory that rely on a “reduced equivalent depth” to represent moist dynamics.

 
more » « less
NSF-PAR ID:
10445087
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Linearized wave solutions on the equatorial beta plane are examined in the presence of a background meridional moisture gradient. Of interest is a slow, eastward-propagating n = 1 mode that is unstable at planetary scales and only exists for a small range of zonal wavenumbers ( ). The mode dispersion curve appears as an eastward extension of the westward-propagating equatorial Rossby wave solution. This mode is therefore termed the eastward-propagating equatorial Rossby wave (ERW). The zonal wavenumber-2 ERW horizontal structure consists of a low-level equatorial convergence center flanked by quadrupole off-equatorial gyres, and resembles the horizontal structure of the observed MJO. An analytic, leading-order dispersion relationship for the ERW shows that meridional moisture advection imparts eastward propagation, and that the smallness of a gross moist stability–like parameter contributes to the slow phase speed. The ERW is unstable near planetary scales when low-level easterlies moisten the column. This moistening could come from either zonal moisture advection or surface fluxes or a combination thereof. When westerlies instead moisten the column, the ERW is damped and the westward-propagating long Rossby wave is unstable. The ERW does not exist when the meridional moisture gradient is too weak. A moist static energy budget analysis shows that the ERW scale selection is partly due to finite-time-scale convective adjustment and less effective zonal wind–induced moistening at smaller scales. Similarities in the phase speed, preferred scale, and horizontal structure suggest that the ERW is a beta-plane analog of the MJO. 
    more » « less
  2. Abstract

    Observations of column water vapor in the tropics show significant variations in space and time, indicating that it is strongly influenced by the passage of weather systems. It is hypothesized that many of the influencing systems are moisture modes, systems whose thermodynamics are governed by moisture. On the basis of four objective criteria, results suggest that all oceanic convectively-coupled tropical depression-like waves (TD-waves) and equatorial Rossby waves are moisture modes. These modes occur where the horizontal column moisture gradient is steep and not where the column water vapor content is high. Despite geographical basic state differences, the moisture modes are driven by the same mechanisms across all basins. The moist static energy (MSE) anomalies propagate westward by horizontal moisture advection by the trade winds. Their growth is determined by the advection of background moisture by the anomalous meridional winds and anomalous radiative heating. Horizontal maps of column moisture and 850 hPa streamfunction show that convection is partially collocated with the low-level circulation in nearly all the waves. Both this structure and the process of growth indicate that the moisture modes grow from moisture-vortex instability. Lastly, space-time spectral analysis reveals that column moisture and low-level meridional winds are coherent and exhibit a phasing that is consistent with a poleward latent energy transport. Collectively, these results indicate that moisture modes are ubiquitous across the tropics. That they occur in regions of steep horizontal moisture gradients and grow from moisture-vortex instability suggests that these gradients are inherently unstable and are subject to continuous stirring.

     
    more » « less
  3. Abstract

    Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis.

    Significance Statement

    In comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.

     
    more » « less
  4. Abstract

    Interactions between large-scale waves and the Hadley Cell are examined using a linear two-layer model on anf-plane. A linear meridional moisture gradient determines the strength of the idealized Hadley Cell. The trade winds are in thermal wind balance with a weak temperature gradient (WTG). The mean meridional moisture gradient is unstable to synoptic-scale (horizontal scale of ∼1000 km) moisture modes that are advected westward by the trade winds, reminiscent of oceanic tropical depression-like waves. Meridional moisture advection causes the moisture modes to grow from “moisture-vortex instability” (MVI), resulting in a poleward eddy moisture flux that flattens the zonal-mean meridional moisture gradient, thereby weakening the Hadley Cell. The amplification of waves at the expense of the zonal-mean meridional moisture gradient implies a downscale latent energy cascade. The eddy moisture flux is opposed by a regeneration of the meridional moisture gradient by the Hadley Cell. These Hadley Cell-moisture mode interactions are reminiscent of quasi-geostrophic interactions, except that wave activity is due to column moisture variance rather than potential vorticity variance. The interactions can result in predator-prey cycles in moisture mode activity and Hadley Cell strength that are akin to ITCZ breakdown. It is proposed that moisture modes are the tropical analog to midlatitude baroclinic waves. MVI is analogous to baroclinic instability, stirring latent energy in the same way that dry baroclinic eddies stir sensible heat. These results indicate that moisture modes stabilize the Hadley Cell, and may be as important as the latter in global energy transport.

     
    more » « less
  5. Abstract

    The longitudinal location of precipitation anomalies over the equatorial Pacific shows a distinctive feature with the westernmost location for La Niña, the easternmost location for eastern Pacific (EP) El Niño, and somewhere between for central Pacific (CP) El Niño, even though the center of the sea surface temperature anomaly (SSTA) for La Niña is located slightly east of that of CP El Niño. The mechanisms for such a precipitation diversity were investigated through idealized model simulations and moisture and moist static energy budget analyses. It is revealed that the boundary layer convergence anomalies associated with the precipitation diversity are mainly induced by underlying SSTA through the Lindzen–Nigam mechanism, that is, their longitudinal locations are mainly controlled by the meridional and zonal distributions of the ENSO SSTA. The westward shift of the precipitation anomaly center during La Niña relative to that during CP El Niño is primarily caused by the combined effects of nonlinear zonal moist enthalpy advection anomalies and the Lindzen–Nigam mechanism mentioned above. Such a zonal diversity is further enhanced by the “convection–cloud–longwave radiation” feedback, the SST-induced latent heat flux anomalies, and the advection of mean moist enthalpy by anomalous winds. This diversity in the longitudinal location of precipitation anomalies has contributions to the diversities in the longitudinal locations of anomalous Walker circulation and western North Pacific anomalous anticyclone/cyclone among the three types of ENSO.

     
    more » « less