skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Planetesimal Accretion at Short Orbital Periods
Abstract

Formation models in which terrestrial bodies grow via the pairwise accretion of planetesimals have been reasonably successful at reproducing the general properties of the Solar System, including small-body populations. However, planetesimal accretion has not yet been fully explored in the context of the wide variety of recently discovered extrasolar planetary systems, in particular those that host short-period terrestrial planets. In this work, we use directN-body simulations to explore and understand the growth of planetary embryos from planetesimals in disks extending down to ≃1 day orbital periods. We show that planetesimal accretion becomes nearly 100% efficient at short orbital periods, leading to embryo masses that are much larger than the classical isolation mass. For rocky bodies, the physical size of the object begins to occupy a significant fraction of its Hill sphere toward the inner edge of the disk. In this regime, most close encounters result in collisions, rather than scattering, and the system does not develop a bimodal population of dynamically hot planetesimals and dynamically cold oligarchs, as is seen in previous studies. The highly efficient accretion seen at short orbital periods implies that systems of tightly packed inner planets should be almost completely devoid of any residual small bodies. We demonstrate the robustness of our results to assumptions about the initial disk model, and we also investigate the effects that our simplified collision model has on the emergence of this non-oligarchic growth mode in a planet-forming disk.

 
more » « less
Award ID(s):
2006752
PAR ID:
10445107
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 61
Size(s):
Article No. 61
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using the tree-based N-body code ChaNGa, we explore the consequences of planetesimal-planetesimal accretion in the context of systems of tightly-packed inner planets (STIPs). Formation models for STIPs often begin with the assumption that the building blocks for the planets previously underwent a phase of oligarchic growth, in which a handful of large bodies develop and leave behind a dynamically hot population of residual planetesimals. We show that the conditions required for oligarchic growth become difficult to achieve close to the star, where the dynamical and orbital timescales are short. In this case, planetary embryos can form much larger than the typical isolation mass. We explore a range of physically motivated initial conditions for the starting distribution of planetesimals and find that a number of different outcomes for the resulting embryo and residual planetesimal populations are possible. In some cases, a transition region develops partway out in the disk, the location of which serves as an artifact of the original planetesimal distribution. 
    more » « less
  2. Using high-resolution N-body simulations, we investigate the outcome of terrestrial planet formation at short (< 100 day) orbital periods under a migration-free model. The collisional and dynamical evolution of systems of nearly 106 self-interacting planetesimals are directly followed through the final planet assembly phase. This is done by first modeling the planetesimal evolution with the tree-based N-body code ChaNGa, and then passing the results to the hybrid-symplectic N-body code genga, once the particle count has dropped sufficiently. Previously, we showed that oligarchic growth fails to operate at arbitrarily short orbital periods. This leaves a distinct feature in the mass and orbital distribution of the planetary embryos. In this most recent work, we explore whether this boundary between oligarchic and non-oligarchic growth leaves any kind of imprint on the terrestrial planets that form. If so, this would provide an important clue to evaluate whether migration played a significant role in shaping the architecture systems of tightly-packed inner planets. 
    more » « less
  3. null (Ed.)
    During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos. 
    more » « less
  4. ABSTRACT

    Secular oscillations in multiplanet systems can drive chaotic evolution of a small inner body through non-linear resonant perturbations. This ‘secular chaos’ readily pushes the inner body to an extreme eccentricity, triggering tidal interactions or collision with the central star. We present a numerical study of secular chaos in systems with two planets and test particles using the ring-averaging method, with emphasis on the relationship between the planets’ properties and the time-scale and efficiency of chaotic diffusion. We find that secular chaos can excite extreme eccentricities on time-scales spanning several orders of magnitude in a given system. We apply our results to the evolution of planetary systems around white dwarfs (WDs), specifically the tidal disruption and high-eccentricity migration of planetesimals and planets. We find that secular chaos in a planetesimal belt driven by large (≳10 M⊕), distant ($\gtrsim 10 \, \mathrm{au}$) planets can sustain metal accretion on to a WD over Gyr time-scales. We constrain the total mass of planetesimals initially present within the chaotic zone by requiring that the predicted mass delivery rate to the Roche limit be consistent with the observed metal accretion rates of WDs with atmospheric pollution throughout the cooling sequence. Based on the occurrence of long-period exoplanets and exo-asteroid belts, we conclude that secular chaos can be a significant (perhaps dominant) channel for polluting solitary WDs. Secular chaos can also produce short-period planets and planetesimals around WDs in concert with various circularization mechanisms. We discuss prospects for detecting exoplanets driving secular chaos around WDs using direct imaging and microlensing.

     
    more » « less
  5. Abstract

    The characteristic orbital period of the innermost objects within the galactic census of planetary and satellite systems appears to be nearly universal, withPon the order of a few days. This paper presents a theoretical framework that provides a simple explanation for this phenomenon. By considering the interplay between disk accretion, magnetic field generation by convective dynamos, and Kelvin–Helmholtz contraction, we derive an expression for the magnetospheric truncation radius in astrophysical disks and find that the corresponding orbital frequency is independent of the mass of the host body. Our analysis demonstrates that this characteristic frequency corresponds to a period ofP∼ 3 days although intrinsic variations in system parameters are expected to introduce a factor of a ∼2–3 spread in this result. Standard theory of orbital migration further suggests that planets should stabilize at an orbital period that exceeds disk truncation by a small margin. Cumulatively, our findings predict that the periods of close-in bodies should spanP∼ 2–12 days—a range that is consistent with observations.

     
    more » « less