The current trend in the miniaturization of electronic devices has driven the investigation into many nanostructured materials. The ferroelectric material barium titanate (BaTiO 3 ) has garnered considerable attention over the past decade owing to its excellent dielectric and ferroelectric properties. This has led to significant progress in synthetic techniques that yield high quality BaTiO 3 nanocrystals (NCs) with well-defined morphologies ( e.g. , nanoparticles, nanorods, nanocubes and nanowires) and controlled crystal phases ( e.g. , cubic, tetragonal and multi-phase). The ability to produce nanoscale BaTiO 3 with controlled properties enables theoretical and experimental studies on the intriguing yet complex dielectric properties of individual BaTiO 3 NCs as well as BaTiO 3 /polymer nanocomposites. Compared with polymer-free individual BaTiO 3 NCs, BaTiO 3 /polymer nanocomposites possess several advantages. The polymeric component enables simple solution processibility, high breakdown strength and light weight for device scalability. The BaTiO 3 component enables a high dielectric constant. In this review, we highlight recent advances in the synthesis of high-quality BaTiO 3 NCs via a variety of chemical approaches including organometallic, solvothermal/hydrothermal, templating, molten salt, and sol–gel methods. We also summarize the dielectric and ferroelectric properties of individual BaTiO 3 NCs and devices based on BaTiO 3 NCs via theoretical modeling and experimental piezoresponse force microscopy (PFM) studies. In addition, viable synthetic strategies for novel BaTiO 3 /polymer nanocomposites and their structure–composition–performance relationship are discussed. Lastly, a perspective on the future direction of nanostructured BaTiO 3 -based materials is presented.
more »
« less
Optically Induced Picosecond Lattice Compression in the Dielectric Component of a Strongly Coupled Ferroelectric/Dielectric Superlattice
Abstract Above‐bandgap femtosecond optical excitation of a ferroelectric/dielectric BaTiO3/CaTiO3superlattice leads to structural responses that are a consequence of the screening of the strong electrostatic coupling between the component layers. Time‐resolved X‐ray free‐electron laser diffraction shows that the structural response to optical excitation includes a net lattice expansion of the superlattice consistent with depolarization‐field screening driven by the photoexcited charge carriers. The depolarization‐field‐screening‐driven expansion is separate from a photoacoustic pulse launched from the bottom electrode on which the superlattice is epitaxially grown. The distribution of diffracted intensity of superlattice X‐ray reflections indicates that the depolarization‐field‐screening‐induced strain includes a photoinduced expansion in the ferroelectric BaTiO3and a contraction in CaTiO3. The magnitude of expansion in BaTiO3layers is larger than the contraction in CaTiO3. The difference in the magnitude of depolarization‐field‐screening‐driven strain in the BaTiO3and CaTiO3components can arise from the contribution of the oxygen octahedral rotation patterns at the BaTiO3/CaTiO3interfaces to the polarization of CaTiO3. The depolarization‐field‐screening‐driven polarization reduction in the CaTiO3layers points to a new direction for the manipulation of polarization in the component layers of a strongly coupled ferroelectric/dielectric superlattice.
more »
« less
- Award ID(s):
- 1720415
- PAR ID:
- 10445174
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 8
- Issue:
- 6
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability to produce atomically precise, artificial oxide heterostructures allows for the possibility of producing exotic phases and enhanced susceptibilities not found in parent materials. Typical ferroelectric materials either exhibit large saturation polarization away from a phase boundary or large dielectric susceptibility near a phase boundary. Both large ferroelectric polarization and dielectric permittivity are attained wherein fully epitaxial (PbZr0.8Ti0.2O3)n/(PbZr0.4Ti0.6O3)2n(n= 2, 4, 6, 8, 16 unit cells) superlattices are produced such that the overall film chemistry is at the morphotropic phase boundary, but constitutive layers are not. Long‐ (n≥ 6) and short‐period (n= 2) superlattices reveal large ferroelectric saturation polarization (Ps= 64 µC cm−2) and small dielectric permittivity (εr≈ 400 at 10 kHz). Intermediate‐period (n= 4) superlattices, however, exhibit both large ferroelectric saturation polarization (Ps= 64 µC cm−2) and dielectric permittivity (εr= 776 at 10 kHz). First‐order reversal curve analysis reveals the presence of switching distributions for each parent layer and a third, interfacial layer wherein superlattice periodicity modulates the volume fraction of each switching distribution and thus the overall material response. This reveals that deterministic creation of artificial superlattices is an effective pathway for designing materials with enhanced responses to applied bias.more » « less
-
Abstract Resonant tunneling is a quantum‐mechanical effect in which electron transport is controlled by the discrete energy levels within a quantum‐well (QW) structure. A ferroelectric resonant tunneling diode (RTD) exploits the switchable electric polarization state of the QW barrier to tune the device resistance. Here, the discovery of robust room‐temperature ferroelectric‐modulated resonant tunneling and negative differential resistance (NDR) behaviors in all‐perovskite‐oxide BaTiO3/SrRuO3/BaTiO3QW structures is reported. The resonant current amplitude and voltage are tunable by the switchable polarization of the BaTiO3ferroelectric with the NDR ratio modulated by ≈3 orders of magnitude and an OFF/ON resistance ratio exceeding a factor of 2 × 104. The observed NDR effect is explained an energy bandgap between Ru‐t2gand Ru‐egorbitals driven by electron–electron correlations, as follows from density functional theory calculations. This study paves the way for ferroelectric‐based quantum‐tunneling devices in future oxide electronics.more » « less
-
Abstract The local compositional heterogeneity associated with the short‐range ordering of Mg and Nb in PbMg1/3Nb2/3O3(PMN) is correlated with its characteristic relaxor ferroelectric behavior. Fully ordered PMN is not prepared as a bulk material. This work examines the relaxor behavior in PMN thin films grown at temperatures below 1073 K by artificially reducing the degree of disorder via synthesis of heterostructures with alternate layers of Pb(Mg2/3Nb1/3)O3and PbNbO3, as suggested by the random‐site model. 100 nm thick, phase‐pure films are grown epitaxially on (111) SrTiO3substrates using alternate target timed pulsed‐laser deposition of Pb(Mg2/3Nb1/3)O3and PbNbO3targets with 20% excess Pb. Selected area electron diffraction confirms the emergence of (1/2, 1/2, 1/2) superlattice spots with randomly distributed ordered domains as large as ≈150 nm. These heterostructures exhibit a dielectric constant of 800, loss tangents of ≈0.03 and 2× remanent polarization of ≈11 µC cm−2at room temperature. Polarization–electric field hysteresis loops, Rayleigh data, and optical second‐harmonic generation measurements are consistent with the development of ferroelectric domains below 140 K. Temperature‐dependent permittivity measurements demonstrate reduced frequency dispersion compared to short range ordered PMN films. This work suggests a continuum between normal and relaxor ferroelectric behavior in the engineered PMN thin films.more » « less
-
Abstract The Cold Sintering Process (CSP) can provide opportunities to fabricate high-performance BaTiO3dielectric composites with polymer materials that are typically difficult to impossible to co-process under a conventional sintering process. Therefore, we investigated the preparation process of BaTiO3sintered body by CSP and integrated a well-dispersed intergranular polymer phase. In this study, we focused on preparing BaTiO3and Polytetrafluoroethylene (PTFE) composites. We considered the importance of the particle size of the PTFE phase, and correlated the impact on the composite dielectric properties. Through fitting a general-mixing-law to the dielectric properties as a function of volume fraction, we could deduce more homogeneous composites obtained in using the 200 nm PTFE powders. In addition, the temperature dependent dielectric properties and field dependent conductivity of the composites was investigated. It was found that with the good dispersion of the PTFE can suppress the leakage current density in the dielectric composites.more » « less
An official website of the United States government
