skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differential timing of gene expression and recruitment in independent origins of CAM in the Agavoideae (Asparagaceae)
Summary Crassulacean acid metabolism (CAM) photosynthesis has evolved repeatedly across the plant tree of life, however our understanding of the genetic convergence across independent origins remains hampered by the lack of comparative studies. Here, we explore gene expression profiles in eight species from the Agavoideae (Asparagaceae) encompassing three independent origins of CAM.Using comparative physiology and transcriptomics, we examined the variable modes of CAM in this subfamily and the changes in gene expression across time of day and between well watered and drought‐stressed treatments. We further assessed gene expression and the molecular evolution of genes encoding phosphoenolpyruvate carboxylase (PPC), an enzyme required for primary carbon fixation in CAM.Most time‐of‐day expression profiles are largely conserved across all eight species and suggest that large perturbations to the central clock are not required for CAM evolution. By contrast, transcriptional response to drought is highly lineage specific.YuccaandBeschorneriahave CAM‐like expression ofPPC2, a copy ofPPCthat has never been shown to be recruited for CAM in angiosperms.Together the physiological and transcriptomic comparison of closely related C3and CAM species reveals similar gene expression profiles, with the notable exception of differential recruitment of carboxylase enzymes for CAM function.  more » « less
Award ID(s):
2110875
PAR ID:
10445216
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
235
Issue:
5
ISSN:
0028-646X
Page Range / eLocation ID:
p. 2111-2126
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Joshua trees are long‐lived perennial monocots native to the Mojave Desert in North America. Composed of two species,Yucca brevifoliaandY. jaegeriana(Asparagaceae), Joshua trees are imperiled by climate change, with decreases in suitable habitat predicted under future climate change scenarios. Relatively little is understood about the ecophysiology of Joshua trees across their range, including the extent to which populations are locally adapted or phenotypically plastic to environmental stress.Plants in our common gardens showed evidence of Crassulacean acid metabolism photosynthesis (CAM) in a pilot experiment, despite no prior report of this photosynthetic pathway in these species. We further studied the variation and strength of CAM within a single common garden, measuring seedlings representing populations across the range of the two species.A combination of physiology and transcriptomic data showed low levels of CAM that varied across populations but were unrelated to home environmental conditions. Gene expression confirmed CAM activity and further suggested differences in carbon and nitrogen metabolism betweenY. brevifoliaandY. jaegeriana.Together the results suggest greater physiological diversity between these species than initially expected, particularly at the seedling stage, with implications for future survival of Joshua trees under a warming climate. 
    more » « less
  2. Summary Histone lysine methylations (HLMs) are implicated in control of gene expression in different eukaryotes. However, the role of HLMs in regulating desirable crop traits and the enzymes involved in these modifications are poorly understood.We studied the functions of tomato histone H3 lysine methyltransferases SET Domain Group 33 (SDG33) and SDG34 in biotic and abiotic stress responses.SDG33andSDG34gene edited mutants were altered in H3K36 and H3K4 methylations, and expression of genes involved in diverse processes and responses to biotic and abiotic stimuli.The double but not the single mutants show resistance to the fungal pathogenBotrytis cinerea.Interestingly, single mutants were tolerant to drought and the double mutant showed superior tolerance and plant growth consistent with independent and additive functions. Mutants maintained higher water status during drought and improved recovery and survival after lapse of drought.Notably, diminution of H3K4 and H3K36 trimethylation and expression of negative regulators in challenged plants contributes to stress tolerance of the mutants. Mutations inSDG33andSDG34are likely to remove predisposition to biotic and abiotic stress by disrupting permissive transcriptional context promoting expression of negative regulatory factors. These allows improvement of stress and pathogen tolerance, without growth trade‐offs, through modification of histone epigenetic marks. 
    more » « less
  3. Abstract Global climate change is causing more frequent and severe droughts, which can have negative impacts on plant growth and crop productivity. Under drought conditions, plants produce the hormone ABA (abscisic acid), which regulates adaptive responses, such as stomatal closure and root elongation. Plant viruses have been used in the lab to convey new traits to plants and could also be used to increase production of ABA or to enhance downstream plant drought resistance responses.In this study, foxtail mosaic virus (FoMV) was used to silenceZmPP2C‐A10, a negative regulator of ABA signalling, in maize (Zea maysL.). Both silenced and control plants were exposed to an 8‐day drought treatment, followed by a 30‐day period of rewatering, after which indicators of drought resistance were measured.After drought treatment, we observed a nearly twofold increase in expression of a stress‐mitigation gene,ZmRAB17, reduced chlorophyll fluorescence changes (indicator of stress), and increased plant biomass and development in theZmPP2C‐A10‐silenced maize compared to controls.These results demonstrate that the FoMV system can be used to silence endogenous expression ofZmPP2C‐A10and increase maize tolerance to drought. This could offer a useful tool to improve crop traits and reduce yield loss during the growing season. 
    more » « less
  4. Summary White oak (Quercus alba) is an abundant forest tree species across eastern North America that is ecologically, culturally, and economically important.We report the first haplotype‐resolved chromosome‐scale genome assembly ofQ. albaand conduct comparative analyses of genome structure and gene content against other published Fagaceae genomes. We investigate the genetic diversity of this widespread species and the phylogenetic relationships among oaks using whole genome data.Despite strongly conserved chromosome synteny and genome size acrossQuercus, certain gene families have undergone rapid changes in size, including defense genes. Unbiased annotation of resistance (R) genes across oaks revealed that the overall number of R genes is similar across species – as are the chromosomal locations of R gene clusters – but, gene number within clusters is more labile. We found thatQ. albahas high genetic diversity, much of which predates its divergence from other oaks and likely impacts divergence time estimations. Our phylogenetic results highlight widespread phylogenetic discordance across the genus.The white oak genome represents a major new resource for studying genome diversity and evolution inQuercus. Additionally, we show that unbiased gene annotation is key to accurately assessing R gene evolution inQuercus. 
    more » « less
  5. Abstract Temporally heterogeneous environments may drive rapid and continuous plastic responses, leading to highly variable plasticity in traits. However, direct experimental evidence for such meta‐plasticity due to environmental heterogeneity is rare.Our objective was to investigate the effects of early experience with temporally heterogeneous water availability on the subsequent plasticity of plant species in response to water conditions.We subjected eight plant species from three habitats, four exotic and four native to North America, to initial exposure to either a first round of alternating drought and inundation treatment (Ehet, temporally heterogeneous experience) or a consistently moderate water supply (Ehom, homogeneous experience), and to a second round of drought, moderate watering or inundation treatments. Afterwards the performance in a series of traits of these species, after the first and second rounds of treatments, was measured.Compared withEhom,Ehetincreased final mean total mass of all species considered together but did not affect mean mortality.Ehetrelative toEhom, decreased the initial total mass of native species as a group, but increased the mass of exotic species or species from hydric habitats;Ehetalso increased the late growth of natives, but did not for exotics, and increased the late growth of mesic species more than xeric and hydric species.Our results suggest that previous exposure to temporal heterogeneity in water supply may be not beneficial immediately, but can be beneficial for plant growth and response to water stress later in a plant's lifetime. Heterogeneous experiences may not necessarily enhance the degree of plasticity but may improve the expression of plasticity in terms of better performance later, effects of which differ for different groups of species, suggesting species‐specific strategies for dealing with fluctuating abiotic environments.Synthesis. Previous temporally heterogeneous experience can benefits plant growth later in life though modulating the expression of plasticity, leading to adaptive meta‐plasticity. Studies of meta‐plasticity may improve our understanding not only on the importance of variable plasticity in relation to how plants cope with environmental challenges but also on the costs versus benefits of plastic responses and its limits over the long term. 
    more » « less