The properties of collisionless shocks, like the density jump, are usually derived from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We have already devised a model for the kinetic history of the plasma through the shock front ( J. Plasma Phys. , vol. 84, issue 6, 2018, 905840604), allowing to self-consistently compute the downstream anisotropy, and hence the density jump, in terms of the upstream parameters. This model deals with the case of a parallel shock, where the magnetic field is normal to the front both in the upstream and the downstream. Yet, MHD also allows for shock solutions, the so-called switch-on solutions, where the field is normal to the front only in the upstream. This article consists in applying our model to these switch-on shocks. While MHD offers only one switch-on solution within a limited range of Alfvén Mach numbers, our model offers two kinds of solutions within a slightly different range of Alfvén Mach numbers. These two solutions are most likely the outcome of the intermediate and fast MHD shocks under our model. While the intermediate and fast shocks merge in MHD for the parallel case, they do not within our model. For simplicity, the formalism is restricted to non-relativistic shocks in pair plasmas where the upstream is cold.
more »
« less
A Statistical Analysis of the Fluctuations in the Upstream and Downstream Plasmas of 109 Strong‐Compression Interplanetary Shocks at 1 AU
Abstract The upstream and downstream plasmas of 109 strong‐compression forward interplanetary shocks are statistically analyzed using 3‐s measurements from the WIND spacecraft. The goal is a comparison of the fluctuation properties of downstream plasmas in comparison with the fluctuation properties of upstream plasmas in the inertial range of frequencies and the magnetic‐structure range of spatial scales. The shocks all have density compression rations of ~2 or more. When possible, each shock is categorized according to the type of solar wind plasma it propagates through: 15 shocks are in coronal‐hole‐origin plasma, 42 shocks are in streamer‐belt‐origin plasma, 36 shocks are in sector‐reversal‐region plasmas, and 11 shocks are in ejecta plasma. The statistical study examines magnetic field and velocity spectral indices, the Alfvénicity, the fluctuation amplitudes, Alfvén ratios, the degree of plasma inhomogeneity, and Taylor microscales, looking in particular at (1) fluctuation values downstream that are related to fluctuation values upstream and (2) systematic differences in fluctuation values associated with the type of plasma. It is argued that inhomogeneity of the downstream plasma can be caused by spatial variations in the shock normal angleθBncaused by field direction variations in the upstream magnetic structure. The importance of determining the type of plasma that the shock propagates through is established.
more »
« less
- Award ID(s):
- 1723416
- PAR ID:
- 10445290
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 125
- Issue:
- 6
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine–Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≲16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number,Mf< 7, the angle between the shock normal and average upstream magnetic field,θBn, is not correlated with the energetic particle pressure; in particular, the partial pressure of energized particles does not decrease forθBn≳ 45°. The downstream electron-to-proton energy ratio in the range ≳ 140 eV for electrons and ≳ 70 keV for protons exceeds the expected ∼1% and nears equipartition (>0.1) for the Wind events.more » « less
-
Abstract The formation, development, and impact of slow shocks in the upstream regions of reconnecting current layers are explored. Slow shocks have been documented in the upstream regions of magnetohydrodynamic (MHD) simulations of magnetic reconnection as well as in similar simulations with thekglobalkinetic macroscale simulation model. They are therefore a candidate mechanism for preheating the plasma that is injected into the current layers that facilitate magnetic energy release in solar flares. Of particular interest is their potential role in producing the hot thermal component of electrons in flares. During multi-island reconnection, the formation and merging of flux ropes in the reconnecting current layer drives plasma flows and pressure disturbances in the upstream region. These pressure disturbances steepen into slow shocks that propagate along the reconnecting component of the magnetic field and satisfy the expected Rankine–Hugoniot jump conditions. Plasma heating arises from both compression across the shock and the parallel electric field that develops to maintain charge neutrality in a kinetic system. Shocks are weaker at lower plasmaβ, where shock steepening is slow. While these upstream slow shocks are intrinsic to the dynamics of multi-island reconnection, their contribution to electron heating remains relatively minor compared with that from Fermi reflection and the parallel electric fields that bound the reconnection outflow.more » « less
-
Abstract Collisionless shocks channel the energy of the directed plasma flow into the heating of the plasma species and magnetic field enhancement. The kinetic processes at the shock transition cause the ion distributions just behind the shock to be nongyrotropic. Gyrotropization and subsequent isotropization occur at different spatial scales. Accordingly, for a given upstream plasma and magnetic field state, there would be different downstream states corresponding to the anisotropic and isotropic regions. Thus, at least two sets of Rankine–Hugoniot relations are needed, in general, to describe the connection of the downstream measurable parameters to the upstream ones. We establish the relation between the two sets.more » « less
-
Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect.more » « less