skip to main content


Title: In Situ Measurement of the Energy Fraction in Suprathermal and Energetic Particles at ACE, Wind, and PSP Interplanetary Shocks
Abstract

The acceleration of charged particles by interplanetary shocks (IPs) can drain a nonnegligible fraction of the plasma pressure. In this study, we have selected 17 IPs observed in situ at 1 au by the Advanced Composition Explorer and the Wind spacecraft, and 1 shock at 0.8 au observed by Parker Solar Probe. We have calculated the time-dependent partial pressure of suprathermal and energetic particles (smaller and greater than 50 keV for protons and 30 keV for electrons, respectively) in both the upstream and downstream regions. The particle fluxes were averaged for 1 hr before and 1 hr after the shock time to remove short timescale effects. Using the MHD Rankine–Hugoniot jump conditions, we find that the fraction of the total upstream energy flux transferred to suprathermal and energetic downstream particles is typically ≲16%, in agreement with previous observations and simulations. Notably, by accounting for errors on all measured shock parameters, we have found that for any given fast magnetosonic Mach number,Mf< 7, the angle between the shock normal and average upstream magnetic field,θBn, is not correlated with the energetic particle pressure; in particular, the partial pressure of energized particles does not decrease forθBn≳ 45°. The downstream electron-to-proton energy ratio in the range ≳ 140 eV for electrons and ≳ 70 keV for protons exceeds the expected ∼1% and nears equipartition (>0.1) for the Wind events.

 
more » « less
Award ID(s):
1850774
NSF-PAR ID:
10364614
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
928
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 66
Size(s):
["Article No. 66"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper presents a stochastic three-dimensional focused transport simulation of solar energetic particles (SEPs) produced by a data-driven coronal mass ejection (CME) shock propagating through a data-driven model of coronal and heliospheric magnetic fields. The injection of SEPs at the CME shock is treated using diffusive shock acceleration of post-shock suprathermal solar wind ions. A time-backward stochastic simulation is employed to solve the transport equation to obtain the SEP time–intensity profile at any location, energy, and pitch angle. The model is applied to a SEP event on 2020 May 29, observed by STEREO-A close to ∼1 au and by Parker Solar Probe (PSP) when it was about 0.33 au away from the Sun. The SEP event was associated with a very slow CME with a plane-of-sky speed of 337 km s−1at a height below 6RSas reported in the SOHO/LASCO CME catalog. We compute the time profiles of particle flux at PSP and STEREO-A locations, and estimate both the spectral index of the proton energy spectrum for energies between ∼2 and 16 MeV and the equivalent path length of the magnetic field lines experienced by the first arriving SEPs. We find that the simulation results are well correlated with observations. The SEP event could be explained by the acceleration of particles by a weak CME shock in the low solar corona that is not magnetically connected to the observers.

     
    more » « less
  2. Abstract The Voyager 2 crossing of the termination shock indicated that most of the upstream energy from the thermal solar wind ions was transferred to pickup ions (PUIs) and other energetic particles downstream of the shock. We use hybrid simulations at the termination shock for the Voyager 2, flank, and tail directions to evaluate the distributions of different ion species downstream of the shock over the energy range of 0.52–55 keV. Here, we extend the work of Gkioulidou et al., which showed an energy-dependent discrepancy between modeled and energetic neutral atom (ENA) observations, and fit distributions to a hybrid model to show that a population of PUIs accelerated via diffusive shock acceleration (DSA) to become low-energy anomalous cosmic rays (ACRs) can bridge the gap between modeled and observed ENA fluxes. Our results with the inclusion of DSA via hybrid fitting give entirely new and novel evidence that DSA at the termination shock is likely to be an important physical process. These ACRs carry a significant fraction of the energy density at the termination shock (22%, 13%, and 19% in the Voyager 2, flank, and tail directions, respectively). Using these ACRs in global ENA modeling of the heliosphere from 0.52 to 55 keV, we find that scaling factors as large as 1.8–2.5 are no longer required to match ENA observations at energies of ∼1–4 keV. Large discrepancies between modeled and observed ENAs only remain over energies of 4–20 keV, indicating that there may be a further acceleration mechanism in the heliosheath at these energies. 
    more » « less
  3. Abstract

    We discussWindobservations of a long and slow magnetic cloud (MC) propagating through large‐amplitude Alfvén waves (LAAWs). The MC axis has a strong component along GSEX, as also confirmed by a Grad‐Shafranov reconstruction. It is overtaking the solar wind at a speed roughly equal to the upstream Alfvén speed, leading to a weak shock wave 17 hr ahead. We give evidence to show that the nominal sheath region is populated by LAAWs: (i) a well‐defined de Hoffmann‐Teller frame in which there is excellent correlation between the field and flow vectors, (ii) constant field and total pressure, and (iii) an Alfvén ratio (i.e., ratio of kinetic‐to‐magnetic energy of the fluctuations) near unity at frequencies much lower than the ion cyclotron frequency in the spacecraft frame. In the region where the LAAWs approach the MC's front boundary there are field and flow discontinuities. At the first, magnetic reconnection is taking place, as deduced from a stress balance test (Walén test). This severs connection of some field lines to the Sun and the solar wind strahl disappears. There follows a 2‐hr interval where the magnetic field strength is diminished while pressure balance is maintained. Here the bidirectionality of the suprathermal electron flows is intermittently disrupted. This interval ends with a slow expansion fan downstream of which there is a dropout of halo electrons just inside the front boundary of the MC. This study illustrates an untypical case of a slow MC interacting with LAAWs in the slow solar wind.

     
    more » « less
  4. Abstract Heliospheric energetic neutral atoms (ENAs) originate from energetic ions that are neutralized by charge exchange with neutral atoms in the heliosheath and very local interstellar medium (VLISM). Since neutral atoms are unaffected by electromagnetic fields, they propagate ballistically with the same speeds as parent particles. Consequently, measurements of ENA distributions allow one to remotely image the energetic ion distributions in the heliosheath and VLISM. The origin of the energetic ions that spawn ENAs is still debated, particularly at energies higher than ∼keV. In this work, we summarize five possible sources of energetic ions in the heliosheath that cover the ENA energy from a few keV to hundreds of keV. Three sources of the energetic ions are related to pickup ions (PUIs): those PUIs transmitted across the heliospheric termination shock (HTS), those reflected once or multiple times at the HTS, i.e., reflected PUIs, and those PUIs multiply reflected and further accelerated by the HTS. Two other kinds of ions that can be considered are ions transmitted from the suprathermal tail of the PUI distribution and other particles accelerated at the HTS. By way of illustration, we use these energetic particle distributions, taking account of their evolution in the heliosheath, to calculate the ENA intensities and to analyze the characteristics of ENA spectra observed at 1 au. 
    more » « less
  5. Abstract

    We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (βp= 0.25) collisionless ion–electron shocks with mass ratiomi/me= 200, fast Mach numberMms=1–4, and upstream magnetic field angleθBn= 55°–85° from the shock normalnˆ. It is known that shock electron heating is described by an ambipolar,B-parallel electric potential jump, Δϕ, that scales roughly linearly with the electron temperature jump. Our simulations haveΔϕ/(0.5miush2)0.1–0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕin our low-βpshocks. We further focus on twoθBn= 65° shocks: aMs=4(MA=1.8) case with a long, 30diprecursor of whistler waves alongnˆ, and aMs=7(MA=3.2) case with a shorter, 5diprecursor of whistlers oblique to bothnˆandB;diis the ion skin depth. Within the precursors,ϕhas a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of theMs=4,θBn= 65° case,ϕshows a weak dependence on the electron plasma-to-cyclotron frequency ratioωpece, andϕdecreases by a factor of 2 asmi/meis raised to the true proton–electron value of 1836.

     
    more » « less