The pathogenic fungusBatrachochytrium dendrobatidis(Bd)is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bdmetabolites) can induce acquired resistance toBdin adult Cuban treefrogsOsteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frogPseudacris regilla, to one of 2 prophylactic treatments prior to liveBdexposures: killedBdzoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killedBdzoospores with metabolites reducedBdinfection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly,Bdintensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated thatBdmetabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the solubleBdmetabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance toBdafter metabolite exposure. This work increases hopes that aBd-metabolite prophylaxis might be widely effective across amphibian species and life stages. 
                        more » 
                        « less   
                    
                            
                            Metabolites from the fungal pathogen Batrachochytrium dendrobatidis (bd) reduce Bd load in Cuban treefrog tadpoles
                        
                    
    
            Abstract Batrachochytrium dendrobatidis(Bd) has been associated with massive amphibian population declines worldwide. Wildlife vaccination campaigns have proven effective for mitigating damage from other pathogens, and there is evidence that adult frogs can acquire resistance to Bd when exposed to killed Bd zoospores and the metabolites they produced.Here, we investigated whether Cuban treefrogs tadpolesOsteopilus septentrionaliscan gain protection from Bd through exposure to a prophylaxis treatment composed of killed zoospores or soluble Bd metabolites. We used a 2 × 2 factorial design, crossing the presence or absence of killed zoospores with the presence or absence of Bd metabolites. All hosts were subsequently exposed to live Bd to evaluate susceptibility.Exposure to killed zoospores did not induce a protective response. However, tadpoles exposed to Bd metabolites had significantly lower Bd intensity and prevalence than tadpoles that were not exposed to metabolites.The metabolites Bd produce pose no risk of Bd infection and therefore make an epidemiologically safe prophylaxis treatment, protecting tadpoles against Bd. This work provides a promising potential for protecting amphibians in the wild as a disease management strategy for controlling Bd‐associated declines. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10445334
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Applied Ecology
- Volume:
- 59
- Issue:
- 9
- ISSN:
- 0021-8901
- Page Range / eLocation ID:
- p. 2398-2403
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Batrachochytrium dendrobatidis(Bd), an aquatic pathogenic fungus, is responsible for the decline of hundreds of amphibian species worldwide and negatively impacts biodiversity globally. Prophylactic exposure to the metabolites produced by Bd can provide protection for naïve tree frogs and reduce subsequent Bd infection intensity.Here, we used a response surface design crossing Bd metabolite prophylaxis concentration and exposure duration to determine how these factors modulate prophylactic protection against Bd in Pacific chorus frog (Pseudacris regilla) tadpoles (5 × 5 surface design) and metamorphs (3 × 3 surface design). We exposed individuals every weekday to one of five Bd metabolite concentrations or a water control for 1–5 weeks, after which all animals were challenged with live Bd to evaluate their susceptibility.Exposure to the Bd metabolite prophylaxis reduced Bd load and prevalence compared to the control for both the tadpoles and metamorphs. Increasing Bd metabolite prophylaxis concentration did not confer additional protection for either life stage, but increasing duration of exposure did benefit metamorphs by decreasing Bd prevalence but not Bd load.On average, control tadpoles and metamorphs had 66.2% and 99.4% higher Bd loads, respectively, than tadpoles and metamorphs exposed to any Bd metabolite prophylaxis.Additionally, Bd metabolite prophylaxis reduced Bd prevalence relative to controls in both tadpoles (20.5% vs. 56.3%, respectively) and metamorphs (21.9% vs. 87.5%, respectively).Synthesis and applications: The efficacy of short‐term exposures of relatively low concentrations of Bd metabolites at reducing Bd infections suggests that this approach has the potential to be scaled up to field use to aid in disease mitigation and conservation. Our results, combined with additional research on Bd metabolite prophylaxis for other amphibian species, suggest that this strategy may represent a broadly useful tool to protect at‐risk amphibian populations.more » « less
- 
            Abstract Lethal and sublethal effects of pathogens should theoretically select for host avoidance of these pathogenic organisms. Some amphibians can learn to avoid the pathogenic fungusBatrachochytrium dendrobatidis(Bd) after one infection‐clearance event.Here, we investigated whether four taxonomically distinct amphibians, Cuban tree frogsOsteopilus septentrionalis, southern toadsAnaxyrus(Bufo)terrestris, greenhouse frogsEleutherodactylus planirostrisand pine woods tree frogsHyla femoralis, exhibited any innate or learned avoidance of Bd on a moist substrate and, if so, what cues they used to identify the fungus.Cuban tree frogs, pine woods tree frogs and greenhouse frogs did not appear to exhibit detectable innate or learned avoidance of Bd. However, southern toads learned to avoid Bd after only one exposure. Southern toads avoided any treatment containing Bd metabolites but did not avoid treatments that lacked Bd metabolites even when dead zoospores were present.Bd metabolites appeared to be the cues that amphibians use to avoid Bd. These metabolites may have a distinct smell or may cause discomfort, which would be consistent with a classical or Pavlovian conditioning response.Synthesis and applications. Not all species of amphibians respond the same way to Bd exposure; some can learn to avoid Bd and the metabolites it produces, while others do not. These findings have important implications for both management practices and policy, and should be considered when developing disease models and conservation plans for amphibians.more » « less
- 
            Abstract Batrachochytrium dendrobatidis(Bd) is a pathogenic fungus that has devastated amphibian populations globally by causing the disease chytridiomycosis.Batrachochytrium dendrobatidisis capable of infecting non‐amphibian hosts, such as crayfish, and has been detected on reptile and bird species. Given the taxonomic heterogeneity in the known hosts and vectors of Bd, it is likely that there is a diversity of undiscovered non‐amphibian hosts of the fungus.Here, we investigated whether Bd could survive on freshwater snails (Physella acuta) andCladophoraalgae. We exposed small and large snails (n = 15 snails/size category),Cladophoraalgae (n = 5), and artificial spring water controls (ASW;n = 5) to live Bd. We also maintained Bd‐free control snails (n = 5 snails/size category) in ASW. All treatments were maintained for 7 weeks at 18°C. Mortality was checked three times a week, snails were weighed every 2 weeks, and 7 weeks after exposure, the snails, algae, and water were tested for Bd using quantitative polymerase chain reaction.We found that Bd did not grow on live snails, algae, or ASW long term. Additionally, live snails (n = 20) collected from Bd‐positive ponds in California were all negative for Bd, as well. Given that we found no Bd on the experimentally exposed or field swabbed snails, snails are probably not a reservoir host of Bd.While negative results are often not published, Bd is one of the deadliest pathogens on earth; it is essential to know what is and is not capable of maintaining Bd for well‐designed disease models.more » « less
- 
            Batrachochytrium dendrobatidis(Bd) is a pathogenic fungus known to infect amphibians and crayfish. In crayfish,Bdcauses gill tissue damage, and in some cases, mortality. Most research has focused on the amphibian-Bdsystem, so to date, little is known about the effects ofBdon the crayfish host. Here, we studied the effects of sublethal exposure toBdand the metabolites produced byBdon crayfishProcambarus allenisurvival, gill damage, and oxygen consumption (as a proxy for mass-specific metabolic rate). Oxygen consumption increased 24 h post-exposure to liveBd, indicative of a stress response, followed by a decrease in oxygen consumption over time (χ21= 6.39, p = 0.012). There was no difference in response when comparing the crayfish exposure to liveBdandBd-metabolites alone (χ21= 2.70, p = 0.101), indicating that the metabolites may have been the causative agent responsible for the response. Additionally, oxygen consumption decreased with gill damage (tissue recession) inBd-exposed individuals. We found that high doses ofBdcause outright mortality in crayfish, and we show here that sublethalBd-induced inhibition of oxygen consumption could negatively impact crayfish in the field, possibly reducing their overall fitness. More research is needed to understand this understudied host-parasite system. It is essential that we incorporate the disease dynamics associated withBdand crayfish in conservation disease models, as this is the only way to develop comprehensive community-based models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
