skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 11, 2025

Title: Efficacy of Bd metabolite prophylaxis dose and duration on host defence against the deadly chytrid fungus Batrachochytrium dendrobatidis
Abstract Batrachochytrium dendrobatidis(Bd), an aquatic pathogenic fungus, is responsible for the decline of hundreds of amphibian species worldwide and negatively impacts biodiversity globally. Prophylactic exposure to the metabolites produced by Bd can provide protection for naïve tree frogs and reduce subsequent Bd infection intensity.Here, we used a response surface design crossing Bd metabolite prophylaxis concentration and exposure duration to determine how these factors modulate prophylactic protection against Bd in Pacific chorus frog (Pseudacris regilla) tadpoles (5 × 5 surface design) and metamorphs (3 × 3 surface design). We exposed individuals every weekday to one of five Bd metabolite concentrations or a water control for 1–5 weeks, after which all animals were challenged with live Bd to evaluate their susceptibility.Exposure to the Bd metabolite prophylaxis reduced Bd load and prevalence compared to the control for both the tadpoles and metamorphs. Increasing Bd metabolite prophylaxis concentration did not confer additional protection for either life stage, but increasing duration of exposure did benefit metamorphs by decreasing Bd prevalence but not Bd load.On average, control tadpoles and metamorphs had 66.2% and 99.4% higher Bd loads, respectively, than tadpoles and metamorphs exposed to any Bd metabolite prophylaxis.Additionally, Bd metabolite prophylaxis reduced Bd prevalence relative to controls in both tadpoles (20.5% vs. 56.3%, respectively) and metamorphs (21.9% vs. 87.5%, respectively).Synthesis and applications: The efficacy of short‐term exposures of relatively low concentrations of Bd metabolites at reducing Bd infections suggests that this approach has the potential to be scaled up to field use to aid in disease mitigation and conservation. Our results, combined with additional research on Bd metabolite prophylaxis for other amphibian species, suggest that this strategy may represent a broadly useful tool to protect at‐risk amphibian populations.  more » « less
Award ID(s):
2017785 2109293
PAR ID:
10581649
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
61
Issue:
12
ISSN:
0021-8901
Format(s):
Medium: X Size: p. 3139-3147
Size(s):
p. 3139-3147
Sponsoring Org:
National Science Foundation
More Like this
  1. The pathogenic fungusBatrachochytrium dendrobatidis(Bd)is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bdmetabolites) can induce acquired resistance toBdin adult Cuban treefrogsOsteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frogPseudacris regilla, to one of 2 prophylactic treatments prior to liveBdexposures: killedBdzoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killedBdzoospores with metabolites reducedBdinfection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly,Bdintensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated thatBdmetabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the solubleBdmetabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance toBdafter metabolite exposure. This work increases hopes that aBd-metabolite prophylaxis might be widely effective across amphibian species and life stages. 
    more » « less
  2. Abstract Batrachochytrium dendrobatidis(Bd) has been associated with massive amphibian population declines worldwide. Wildlife vaccination campaigns have proven effective for mitigating damage from other pathogens, and there is evidence that adult frogs can acquire resistance to Bd when exposed to killed Bd zoospores and the metabolites they produced.Here, we investigated whether Cuban treefrogs tadpolesOsteopilus septentrionaliscan gain protection from Bd through exposure to a prophylaxis treatment composed of killed zoospores or soluble Bd metabolites. We used a 2 × 2 factorial design, crossing the presence or absence of killed zoospores with the presence or absence of Bd metabolites. All hosts were subsequently exposed to live Bd to evaluate susceptibility.Exposure to killed zoospores did not induce a protective response. However, tadpoles exposed to Bd metabolites had significantly lower Bd intensity and prevalence than tadpoles that were not exposed to metabolites.The metabolites Bd produce pose no risk of Bd infection and therefore make an epidemiologically safe prophylaxis treatment, protecting tadpoles against Bd. This work provides a promising potential for protecting amphibians in the wild as a disease management strategy for controlling Bd‐associated declines. 
    more » « less
  3. null (Ed.)
    Chytridiomycosis, an infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), poses an imminent conservation threat. The global spread of Bd has led to mass mortality events in many amphibian species, resulting in at least 90 species' extinctions to date. Exposure to Bd metabolites (i.e. non-infectious antigenic chemicals released by Bd) partially protects frogs during subsequent challenges with live Bd, suggesting its use as a prophylactic treatment and potential vaccine. However, we do not know whether Bd metabolite exposure protects against strains beyond the one used for treatment. To address this knowledge gap, we conducted a 3 × 2 experiment where we exposed adult Cuban treefrogs, Osteopilus septentrionalis , to one of three treatments (Bd metabolites from California-isolated strain JEL-270, Panamá-isolated strain JEL-419, or an artificial spring water control) and then challenged individuals with live Bd from either strain. We found that exposure to Bd metabolites from the California-isolated strain significantly reduced Bd loads of frogs challenged with the live Panamá-isolated strain, but no other treatments were found to confer protective effects. These findings demonstrate asymmetric cross-protection of a Bd metabolite prophylaxis and suggest that work investigating multiple, diverse strains is urgently needed. 
    more » « less
  4. With emerging diseases on the rise, there is an urgent need to identify and understand novel mechanisms of prophylactic protection in vertebrate hosts. Inducing resistance against emerging pathogens through prophylaxis is an ideal management strategy that may impact pathogens and their host-associated microbiome. The host microbiome is recognized as a critical component of immunity, but the effects of prophylactic inoculation on the microbiome are unknown. In this study, we investigate the effects of prophylaxis on host microbiome composition, focusing on the selection of anti-pathogenic microbes contributing to host acquired immunity in a model host–fungal disease system, amphibian chytridiomycosis. We inoculated larval Pseudacris regilla against the fungal pathogen Batrachochytrium dendrobatidis ( Bd ) with a Bd metabolite-based prophylactic. Increased prophylactic concentration and exposure duration were associated with significant increases in proportions of putatively Bd -inhibitory host-associated bacterial taxa, indicating a protective prophylactic-induced shift towards microbiome members that are antagonistic to Bd. Our findings are in accordance with the adaptive microbiome hypothesis, where exposure to a pathogen alters the microbiome to better cope with subsequent pathogen encounters. Our study advances research on the temporal dynamics of microbiome memory and the role of prophylaxis-induced shifts in microbiomes contributing to prophylaxis effectiveness. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less
  5. Abstract Batrachochytrium dendrobatidis(Bd) is a pathogenic fungus that has devastated amphibian populations globally by causing the disease chytridiomycosis.Batrachochytrium dendrobatidisis capable of infecting non‐amphibian hosts, such as crayfish, and has been detected on reptile and bird species. Given the taxonomic heterogeneity in the known hosts and vectors of Bd, it is likely that there is a diversity of undiscovered non‐amphibian hosts of the fungus.Here, we investigated whether Bd could survive on freshwater snails (Physella acuta) andCladophoraalgae. We exposed small and large snails (n = 15 snails/size category),Cladophoraalgae (n = 5), and artificial spring water controls (ASW;n = 5) to live Bd. We also maintained Bd‐free control snails (n = 5 snails/size category) in ASW. All treatments were maintained for 7 weeks at 18°C. Mortality was checked three times a week, snails were weighed every 2 weeks, and 7 weeks after exposure, the snails, algae, and water were tested for Bd using quantitative polymerase chain reaction.We found that Bd did not grow on live snails, algae, or ASW long term. Additionally, live snails (n = 20) collected from Bd‐positive ponds in California were all negative for Bd, as well. Given that we found no Bd on the experimentally exposed or field swabbed snails, snails are probably not a reservoir host of Bd.While negative results are often not published, Bd is one of the deadliest pathogens on earth; it is essential to know what is and is not capable of maintaining Bd for well‐designed disease models. 
    more » « less