skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Suspended Sediment‐Induced Stratification Inferred From Concentration and Velocity Profile Measurements in the Lower Yellow River, China
Abstract

Despite a multitude of models predicting sediment transport dynamics in open‐channel flow, self‐organized vertical density stratification that dampens flow turbulence due to the interaction between fluid and sediment has not been robustly validated with field observations from natural rivers. Turbulence‐suppressing density stratification can develop in channels with low channel‐bed slope and high sediment concentration. As the Yellow River, China, maintains one of the highest sediment loads in the world for a low sloping system, this location is ideal for documenting particle and fluid interactions that give rise to density stratification. Herein, we present analyses from a study conducted over a range of discharge conditions (e.g., low flow, rising limb, and flood peak) from a lower reach of the Yellow River, whereby water samples were collected at targeted depths to measure sediment concentration and, simultaneously, velocity measurements were collected throughout the flow depth. Importantly, sediment concentration varied by an order of magnitude between base and flood flows. By comparing measured concentration and velocity profiles to predictive models, we show that the magnitude of density stratification increases with sediment concentration. Furthermore, a steady‐state calculation of sediment suspension is used to determine that sediment diffusivity increases with grain size. Finally, we calculate concentration and velocity profiles, showing that steady‐state sediment suspensions are reliably predicted over a range of stratification conditions larger than had been previously documented in natural river flows. We determine that the magnitude of density stratification can be predicted by a function considering an entrainment parameter, sediment concentration, and bed slope.

 
more » « less
NSF-PAR ID:
10445380
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
58
Issue:
5
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We took field observations on the shallow shoals of South San Francisco Bay to examine how sediment‐induced stratification affects the mean flow and mixing of momentum and sediment throughout the water column. A Vectrino Profiler measured near‐bed velocity and suspended sediment concentration profiles, which we used to calculate profiles of turbulent sediment and momentum fluxes. Additional turbulence statistics were calculated using data from acoustic Doppler velocimeters placed throughout the water column. Results showed that sediment‐induced stratification, which was set up by strong near‐bed wave shear, can reduce the frictional bottom drag felt by the mean flow. Measured turbulence statistics suggest that this drag reduction is caused by stratification suppressing near‐bed turbulent fluxes and reducing turbulent kinetic energy dissipation. Turbulent sediment fluxes, however, were not shown to be limited by sediment‐induced stratification. Finally, we compared our results to a common model parameterization which characterizes stratification through a stability parameter modification to the turbulent eddy viscosity and suggest a new nondimensional parameter that may be better suited to represent stratification when modeling oscillatory boundary layer flows.

     
    more » « less
  2. Abstract

    Wave‐ and current‐supported turbidity currents (WCSTCs) are one of the sediment delivery mechanisms from the inner shelf to the shelf break. Therefore, they play a significant role in the global cycles of geo‐chemically important particulate matter. Recent observations suggest that WCSTCs can transform into self‐driven turbidity currents close to the continental margin. However, little is known regarding the critical conditions that grow self‐driven turbidity currents out of WCSTCs. This is in part due to the knowledge gaps in the dynamics of WCSTCs regarding the role of density stratification. Especially the effect of sediment entrainment on the amount of sediment suspension has been overlooked. To this end, this study revisits the existing theoretical framework for a simplified WCSTC, in which waves are absent, that is, along‐shelf current‐supported turbidity current. A depth‐integrated advection model is developed for suspended sediment concentration. The model results, which are verified by turbulence‐resolving simulations, indicate that the amount of suspended sediment load is regulated by the equilibrium among positive/negative feedback between entrainment and cross‐shelf gravity force/density stratification, and settling flux dissociated with density stratification. It is also found that critical density stratification is not a necessary condition for equilibrium. A quantitative relation is developed for the critical conditions for self‐driven turbidity currents, which is a function of bed shear stress, entrainment parameters, bed slope, and sediment settling velocity. In addition, the suspended sediment load is analytically estimated from the model developed.

     
    more » « less
  3. Abstract

    A new modeling methodology for ripple dynamics driven by oscillatory flows using a Eulerian two‐phase flow approach is presented in order to bridge the research gap between near‐bed sediment transport via ripple migration and suspended load transport dictated by ripple induced vortices. Reynolds‐averaged Eulerian two‐phase equations for fluid phase and sediment phase are solved in a two‐dimensional vertical domain with akεclosure for flow turbulence and particle stresses closures for short‐lived collision and enduring contact. The model can resolve full profiles of sediment transport without making conventional near‐bed load and suspended load assumptions. The model is validated with an oscillating tunnel experiment of orbital ripple driven by a Stokes second‐order (onshore velocity skewed) oscillatory flow with a good agreement in the flow velocity and sediment concentration. Although the suspended sediment concentration far from the ripple in the dilute region was underpredicted by the present model, the model predicts an onshore ripple migration rate that is in very good agreement with the measured value. Another orbital ripple case driven by symmetric sinusoidal oscillatory flow is also conducted to contrast the effect of velocity skewness. The model is able to capture a net offshore‐directed suspended load transport flux due to the asymmetric primary vortex consistent with laboratory observation. More importantly, the model can resolve the asymmetry of onshore‐directed near‐bed sediment flux associated with more intense boundary layer flow speed‐up during onshore flow cycle and sediment avalanching near the lee ripple flank which force the onshore ripple migration.

     
    more » « less
  4. Abstract

    River dams provide many benefits, including flood control. However, due to constantly evolving channel morphology, downstream conveyance of floodwaters following dam closure is difficult to predict. Here, we test the hypothesis that the incised, enlarged channel downstream of dams provides enhanced water conveyance, using a case study from the lower Yellow River, China. We find that, although flood stage is lowered for small floods, counterintuitively, flood stage downstream of a dam can be amplified for moderate and large floods. This arises because bed incision is accompanied by sediment coarsening, which facilitates development of large dunes that increase flow resistance and reduce velocity relative to pre-dam conditions. Our findings indicate the underlying mechanism for such flood amplification may occur in >80% of fine-grained rivers, and suggest the need to reconsider flood control strategies in such rivers worldwide.

     
    more » « less
  5. Abstract

    River channel beds aggrade and incise through time in response to temporal variation in the upstream supply of water and sediment. However, we lack a thorough understanding of which of these is the dominant driver of channel bed elevation change. This lack hampers flood hazard prediction, as changes to the bed elevation can either augment or reduce flood heights. Here, we explore the drivers of channel change using multidecadal time series of river bed elevation at 49 United States Geological Survey (USGS) gage sites in the uplands of Washington State, USA. We find that channel bed elevations at many of the gages change remarkably little over >80 years, while others are highly unstable. Despite regionally synchronous decadal fluctuations in flood intensity, there is a lack of regional synchrony of channel response at the decadal scale. At the monthly scale, the magnitude of antecedent high flow events between gage measurements does not predict either the direction or magnitude of shift in channel bed elevation. That variations in flood magnitude are insufficient to explain changes in bed elevation suggests that fluctuations in sediment supply, rather than variation in peak flows, are the primary driver of change to river bed elevation. In this region, channels downstream from glaciers have statistically significantly greater variability in bed elevation compared to those lacking upstream glaciers. Together, these findings suggest that aggradation and incision signals in this region predominately reflect fluctuations in sediment supply, commonly associated with glaciogenic sources, rather than response to high flow events.

     
    more » « less