A bstract We explore the possibility that dark matter is a pair of vector-like fermionic SU(2) L doublets and propose a novel mechanism of dark matter production that proceeds through the confinement of the weak sector of the Standard Model. This confinement phase causes the Standard Model doublets and dark matter to confine into pions. The dark pions freeze-out before the weak sector deconfines and generate a relic abundance of dark matter. We solve the Boltzmann equations for this scenario to determine the scale of confinement and constituent dark matter mass required to produce the observed relic density. We determine which regions of this parameter space evade direct detection, collider bounds, and successfully produce the observed relic density of dark matter. For a TeV scale pair of vector-like fermionic SU(2) L doublets, we find the weak confinement scale to be ∼ 700 TeV.
more »
« less
Dark matter from a conformal Dark Sector
A bstract We consider theories in which a dark sector is described by a Conformal Field Theory (CFT) over a broad range of energy scales. A coupling of the dark sector to the Standard Model breaks conformal invariance. While weak at high energies, the breaking grows in the infrared, and at a certain energy scale the theory enters a confined (hadronic) phase. One of the hadronic excitations can play the role of dark matter. We study a “Conformal Freeze-In” cosmological scenario, in which the dark sector is populated through its interactions with the SM at temperatures when it is conformal. In this scenario, the dark matter relic density is determined by the CFT data, such as the dimension of the CFT operator coupled to the Standard Model. We show that this simple and highly predictive model of dark matter is phenomenologically viable. The observed relic density is reproduced for a variety of SM operators (“portals”) coupled to the CFT, and the resulting models are consistent with observational constraints. The mass of the COFI dark matter candidate is predicted to be in the keV-MeV range.
more »
« less
- Award ID(s):
- 2014071
- PAR ID:
- 10434471
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we consider the case of a strongly coupled dark/hidden sector, which extends the Standard Model (SM) by adding an additional non-Abelian gauge group. These extensions generally contain matter fields, much like the SM quarks, and gauge fields similar to the SM gluons. We focus on the exploration of such sectors where the dark particles are produced at the LHC through a portal and undergo rapid hadronization within the dark sector before decaying back, at least in part and potentially with sizeable lifetimes, to SM particles, giving a range of possibly spectacular signatures such as emerging or semi-visible jets. Other, non-QCD-like scenarios leading to soft unclustered energy patterns or glueballs are also discussed. After a review of the theory, existing benchmarks and constraints, this work addresses how to build consistent benchmarks from the underlying physical parameters and present new developments for the pythia Hidden Valley module, along with jet substructure studies. Finally, a series of improved search strategies is presented in order to pave the way for a better exploration of the dark showers at the LHC.more » « less
-
A bstract Hidden sectors are ubiquitous in supergravity theories, in strings and in branes. Well motivated models such as the Stueckelberg hidden sector model could provide a candidate for dark matter. In such models, the hidden sector communicates with the visible sector via the exchange of a dark photon (dark Z ′) while dark matter is constituted of Dirac fermions in the hidden sector. Using data from collider searches and precision measurements of SM processes as well as the most recent limits from dark matter direct and indirect detection experiments, we perform a comprehensive scan over a wide range of the Z ′ mass and set exclusion bounds on the parameter space from sub-GeV to several TeV. We then discuss the discovery potential of an $$ \mathcal{O} $$ O (TeV) scale Z ′ at HL-LHC and the ability of future forward detectors to probe very weakly interacting sub-GeV Z ′ bosons. Our analysis shows that the parameter space in which a Z ′ can decay to hidden sector dark matter is severely constrained whereas limits become much weaker for a Z ′ with no dark decays. The analysis also favors a self-thermalized dark sector which is necessary to satisfy the dark matter relic density.more » « less
-
Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeVA bstract The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb −1 , collected with the CMS detector at the CERN LHC, at $$ \sqrt{s} $$ s = 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z′ mediator produced as a resonance in proton-proton collisions. The mediator decay results in two “semivisible” jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z′ boson has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5–4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.more » « less
-
A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies.more » « less