Abstract We introduce $\varepsilon $ -approximate versions of the notion of a Euclidean vector bundle for $\varepsilon \geq 0$ , which recover the classical notion of a Euclidean vector bundle when $\varepsilon = 0$ . In particular, we study Čech cochains with coefficients in the orthogonal group that satisfy an approximate cocycle condition. We show that $\varepsilon $ -approximate vector bundles can be used to represent classical vector bundles when $\varepsilon> 0$ is sufficiently small. We also introduce distances between approximate vector bundles and use them to prove that sufficiently similar approximate vector bundles represent the same classical vector bundle. This gives a way of specifying vector bundles over finite simplicial complexes using a finite amount of data and also allows for some tolerance to noise when working with vector bundles in an applied setting. As an example, we prove a reconstruction theorem for vector bundles from finite samples. We give algorithms for the effective computation of low-dimensional characteristic classes of vector bundles directly from discrete and approximate representations and illustrate the usage of these algorithms with computational examples.
more »
« less
FibeRed: Fiberwise Dimensionality Reduction of Topologically Complex Data with Vector Bundles
Datasets with non-trivial large scale topology can be hard to embed in low-dimensional Euclidean space with existing dimensionality reduction algorithms. We propose to model topologically complex datasets using vector bundles, in such a way that the base space accounts for the large scale topology, while the fibers account for the local geometry. This allows one to reduce the dimensionality of the fibers, while preserving the large scale topology. We formalize this point of view and, as an application, we describe a dimensionality reduction algorithm based on topological inference for vector bundles. The algorithm takes as input a dataset together with an initial representation in Euclidean space, assumed to recover part of its large scale topology, and outputs a new representation that integrates local representations obtained through local linear dimensionality reduction. We demonstrate this algorithm on examples coming from dynamical systems and chemistry. In these examples, our algorithm is able to learn topologically faithful embeddings of the data in lower target dimension than various well known metric-based dimensionality reduction algorithms.
more »
« less
- PAR ID:
- 10445620
- Editor(s):
- Chambers, Erin W.; Gudmundsson, Joachim
- Publisher / Repository:
- Schloss Dagstuhl – Leibniz-Zentrum für Informatik
- Date Published:
- Journal Name:
- Leibniz international proceedings in informatics
- Volume:
- 258
- Issue:
- 58
- ISSN:
- 1868-8969
- Page Range / eLocation ID:
- 56:1 - 56:18
- Subject(s) / Keyword(s):
- topological inference dimensionality reduction vector bundle cocycle Mathematics of computing → Algebraic topology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data visualizations can reveal trends and patterns that are not otherwise obvious from the raw data or summary statistics. While visualizing low-dimensional data is relatively straightforward (for example, plotting the change in a variable over time as (x,y) coordinates on a graph), it is not always obvious how to visualize high-dimensional datasets in a similarly intuitive way. Here we present HypeTools, a Python toolbox for visualizing and manipulating large, high-dimensional datasets. Our primary approach is to use dimensionality reduction techniques (Pearson, 1901; Tipping & Bishop, 1999) to embed high-dimensional datasets in a lower-dimensional space, and plot the data using a simple (yet powerful) API with many options for data manipulation [e.g. hyperalignment (Haxby et al., 2011), clustering, normalizing, etc.] and plot styling. The toolbox is designed around the notion of data trajectories and point clouds. Just as the position of an object moving through space can be visualized as a 3D trajectory, HyperTools uses dimensionality reduction algorithms to create similar 2D and 3D trajectories for time series of high-dimensional observations. The trajectories may be plotted as interactive static plots or visualized as animations. These same dimensionality reduction and alignment algorithms can also reveal structure in static datasets (e.g. collections of observations or attributes). We present several examples showcasing how using our toolbox to explore data through trajectories and low-dimensional embeddings can reveal deep insights into datasets across a wide variety of domains.more » « less
-
The activity of the grid cell population in the medial entorhinal cortex (MEC) of the mammalian brain forms a vector representation of the self-position of the animal. Recurrent neural networks have been proposed to explain the properties of the grid cells by updating the neural activity vector based on the velocity input of the animal. In doing so, the grid cell system effectively performs path integration. In this paper, we investigate the algebraic, geometric, and topological properties of grid cells using recurrent network models. Algebraically, we study the Lie group and Lie algebra of the recurrent transformation as a representation of self-motion. Geometrically, we study the conformal isometry of the Lie group representation where the local displacement of the activity vector in the neural space is proportional to the local displacement of the agent in the 2D physical space. Topologically, the compact abelian Lie group representation automatically leads to the torus topology commonly assumed and observed in neuroscience. We then focus on a simple non-linear recurrent model that underlies the continuous attractor neural networks of grid cells. Our numerical experiments show that conformal isometry leads to hexagon periodic patterns in the grid cell responses and our model is capable of accurate path integration.more » « less
-
Dimensionality-reduction methods are a fundamental tool in the analysis of large datasets. These algorithms work on the assumption that the "intrinsic dimension" of the data is generally much smaller than the ambient dimension in which it is collected. Alongside their usual purpose of mapping data into a smaller-dimensional space with minimal information loss, dimensionality-reduction techniques implicitly or explicitly provide information about the dimension of the dataset.In this paper, we propose a new statistic that we call the kappa-profile for analysis of large datasets. The kappa-profile arises from a dimensionality-reduction optimization problem: namely that of finding a projection that optimally preserves the secants between points in the dataset. From this optimal projection we extract kappa, the norm of the shortest projected secant from among the set of all normalized secants. This kappa can be computed for any dimension k; thus the tuple of kappa values (indexed by dimension) becomes a kappa-profile. Algorithms such as the Secant-Avoidance Projection algorithm and the Hierarchical Secant-Avoidance Projection algorithm provide a computationally feasible means of estimating the kappa-profile for large datasets, and thus a method of understanding and monitoring their behavior. As we demonstrate in this paper, the kappa-profile serves as a useful statistic in several representative settings: weather data, soundscape data, and dynamical systems data.more » « less
-
Dimensionality-reduction techniques are a fundamental tool for extracting useful information from high-dimensional data sets. Because secant sets encode manifold geometry, they are a useful tool for designing meaningful data-reduction algorithms. In one such approach, the goal is to construct a projection that maximally avoids secant directions and hence ensures that distinct data points are not mapped too close together in the reduced space. This type of algorithm is based on a mathematical framework inspired by the constructive proof of Whitney's embedding theorem from differential topology. Computing all (unit) secants for a set of points is by nature computationally expensive, thus opening the door for exploitation of GPU architecture for achieving fast versions of these algorithms. We present a polynomial-time data-reduction algorithm that produces a meaningful low-dimensional representation of a data set by iteratively constructing improved projections within the framework described above. Key to our algorithm design and implementation is the use of GPUs which, among other things, minimizes the computational time required for the calculation of all secant lines. One goal of this report is to share ideas with GPU experts and to discuss a class of mathematical algorithms that may be of interest to the broader GPU community.more » « less