skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long-lived Ag106+ Luminescence and a Split DNA Scaffold
Molecular silver clusters emit across the visible to near-infrared, and specific chromophores can be formed using DNA strands. We study C4AC4TC3G that selectively coordinates and encapsulates Ag106+, and this chromophore has two distinct electronic transitions. The green emission is strong and prompt with ϕ = 18% and τ = 1.25 ns, and the near-infrared luminescence is weaker, slower with τ = 50 µs, and is partly quenched by oxygen, suggesting phosphorescence. This lifetime can be modulated by the DNA host, and we consider two derivatives of C4AC4TC3G with similar sequences but distinct structures. In one variant, thymine was excised to create an abasic gap in an otherwise intact strand. In the other, the covalent phosphate linkage was removed to split the DNA scaffold into two fragments. In relation to the contiguous strands, the broken template speeds the luminescence decay by twofold, and this difference may be due to greater DNA flexibility. These modifications suggest that a DNA can be structurally tuned to modulate metastable electronic states in its silver cluster adducts.  more » « less
Award ID(s):
2002910
PAR ID:
10445650
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of chemical physics
Volume:
154
ISSN:
1520-9032
Page Range / eLocation ID:
244302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA-templated silver clusters are chromophores in which the nucleobases encode the cluster spectra and brightness. We describe the coordination environments of two nearly identical Ag106+ clusters that form with 18-nucleotide strands CCCCA CCCCT CCCX TTTT, with X = guanosine and inosine. For the first time, femtosecond time-resolved infrared (TRIR) spectroscopy with visible excitation and mid-infrared probing is used to correlate the response of nucleobase vibrational modes to electronic excitation of the metal cluster. A rich pattern of transient TRIR peaks in the 1400–1720 cm–1 range decays synchronously with the visible emission. Specific infrared signatures associated with the single guanosine/inosine along with a subset of cytidines, but not the thymidines, are observed. These fingerprints suggest that the network of bonds between a silver cluster adduct and its polydentate DNA ligands can be deciphered to rationally tune the coordination and thus spectra of molecular silver chromophores. 
    more » « less
  2. DNA-stabilized silver nanoclusters (AgN-DNAs) are a class of nanomaterials comprised of 10-30 silver atoms held together by short synthetic DNA template strands. AgN-DNAs are promising biosensors and fluorophores due to their small sizes, natural compatibility with DNA, and bright fluorescence---the property of absorbing light and re-emitting light of a different color. The sequence of the DNA template acts as a "genome" for AgN-DNAs, tuning the size of the encapsulated silver nanocluster, and thus its fluorescence color. However, current understanding of the AgN-DNA genome is still limited. Only a minority of DNA sequences produce highly fluorescent AgN-DNAs, and the bulky DNA strands and complex DNA-silver interactions make it challenging to use first principles chemical calculations to understand and design AgN-DNAs. Thus, a major challenge for researchers studying these nanomaterials is to develop methods to employ observational data about studied AgN-DNAs to design new nanoclusters for targeted applications. In this work, we present an approach to design AgN-DNAs by employing variational autoencoders (VAEs) as generative models. Specifically, we employ an LSTM-based β-VAE architecture and regularize its latent space to correlate with AgN-DNA properties such as color and brightness. The regularization is adaptive to skewed sample distributions of available observational data along our design axes of properties. We employ our model for design of AgN-DNAs in the near-infrared (NIR) band, where relatively few AgN-DNAs have been observed to date. Wet lab experiments validate that when employed for designing new AgN-DNAs, our model significantly shifts the distribution of AgN-DNA colors towards the NIR while simultaneously achieving bright fluorescence. This work shows that VAE-based generative models are well-suited for the design of AgN-DNAs with multiple targeted properties, with significant potential to advance the promising applications of these nanomaterials for bioimaging, biosensing, and other critical technologies. 
    more » « less
  3. DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag106+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag106+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2–NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs–400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster–ligand interactions and, in turn, cluster brightness. 
    more » « less
  4. Achilefu, Samuel; Raghavachari, Ramesh (Ed.)
    Invented in 2010, NanoCluster Beacons (NCBs) (1) are an emerging class of turn-on probes that show unprecedented capabilities in single-nucleotide polymorphism (2) and DNA methylation (3) detection. As the activation colors of NCBs can be tuned by a near-by, guanine-rich activator strand, NCBs are versatile, multicolor probes suitable for multiplexed detection at low cost. Whereas a variety of NCB designs have been explored and reported, further diversification and optimization of NCBs require a full scan of the ligand composition space. However, the current methods rely on microarray and multi-well plate selection, which only screen tens to hundreds of activator sequences (4, 5). Here we take advantage of the next-generation-sequencing (NGS) platform for high-throughput, large-scale selection of activator strands. We first generated a ~104 activator sequence library on the Illumina MiSeq chip. Hybridizing this activator sequence library with a common nucleation sequence (which carried a nonfluorescent silver cluster) resulted in hundreds of MiSeq chip images with millions of bright spots (i.e. light-up polonies) of various intensities and colors. With a method termed Chip-Hybridized Associated Mapping Platform (CHAMP) (6), we were able to map these bright spots to the original DNA sequencing map, thus recovering the activator sequence behind each bright spot. After assigning an “activation score” to each “light-up polony”, we used a computational algorithm to select the best activator strands and validate these strands using the traditional in-solution preparation and fluorometer measurement method. By exploring a vast ligand composition space and observing the corresponding activation behaviors of silver clusters, we aim to elucidate the design rules of NCBs. 
    more » « less
  5. We present chemical synthesis strategies for DNA-stabilized silver nanoclusters (AgN-DNAs) with near-infrared (NIR) emission in the biological tissue transparency windows. Elevated temperatures can significantly increase chemical yield of near-infrared nanoclusters. In most cases, basic pH favors near-infrared nanoclusters while micromolar amounts of NaCl inhibit their formation. 
    more » « less