Background and PurposeAMPA receptors, which shape excitatory postsynaptic currents and are directly involved in overactivation of synaptic function during seizures, represent a well‐accepted target for anti‐epileptic drugs. Trans‐4‐butylcyclohexane carboxylic acid (4‐BCCA) has emerged as a new promising anti‐epileptic drug in several in vitro and in vivo seizure models, but the mechanism of its action remained unknown. The purpose of this study is to characterize structure and dynamics of 4‐BCCA interaction with AMPA receptors. Experimental ApproachWe studied the molecular mechanism of AMPA receptor inhibition by 4‐BCCA using a combination of X‐ray crystallography, mutagenesis, electrophysiological assays, and molecular dynamics simulations. Key ResultsWe identified 4‐BCCA binding sites in the transmembrane domain (TMD) of AMPA receptor, at the lateral portals formed by transmembrane segments M1–M4. At this binding site, 4‐BCCA is very dynamic, assumes multiple poses, and can enter the ion channel pore. Conclusion and Implications4‐BCCA represents a low‐affinity inhibitor of AMPA receptors that acts at the TMD sites distinct from non‐competitive inhibitors, such as the anti‐epileptic drug perampanel and the ion channel blockers. Further studies might examine the possibsility of synergistic use of these inhibitors in treatment of epilepsy and a wide range of neurological disorders and gliomas. LINKED ARTICLESThis article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visithttp://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc 
                        more » 
                        « less   
                    
                            
                            Structure‐based survey of ligand binding in the human insulin receptor
                        
                    
    
            The insulin receptor is a membrane protein responsible for the regulation of nutrient balance; and therefore, it is an attractive target in the treatment of diabetes and metabolic syndrome. Pharmacology of the insulin receptor involves two distinct mechanisms: (1) activation of the receptor by insulin mimetics that bind in the extracellular domain and (2) inhibition of the receptor TK enzymatic activity in the cytoplasmic domain. While a complete structural picture of the full‐length receptor comprising the entire sequence covering extracellular, transmembrane, juxtamembrane and cytoplasmic domains is still elusive, recent progress through cryoelectron microscopy has made it possible to describe the initial insulin ligand binding events at atomistic detail. We utilize this opportunity to obtain structural insights into the pharmacology of the insulin receptor. To this end, we conducted a comprehensive docking study of known ligands to the new structures of the receptor. Through this approach, we provide an in‐depth, structure‐based review of human insulin receptor pharmacology in light of the new structures. LINKED ARTICLESThis article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visithttp://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10445851
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- British Journal of Pharmacology
- Volume:
- 179
- Issue:
- 14
- ISSN:
- 0007-1188
- Page Range / eLocation ID:
- p. 3512-3528
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Eye size varies notably across taxa. Much work suggests that this variation is driven by contrasting ecological selective pressures. However, evaluations of the relationship between ecological factors and shifts in eye size have largely occurred at the macroevolutionary scale. Experimental tests in nature are conspicuously absent.Trinidadian killifish,Rivulus hartii, are found across fish communities that differ in predation intensity. We recently showed that increased predation is associated with the evolution of a smaller eye. Here, we test how divergent predatory regimes alter the trajectory of eye size evolution using comparative mark–recapture experiments in multiple streams.We found that increases in eye size are associated with enhanced survival, irrespective of predation intensity. More importantly, eye size is associated with enhanced growth in communities that lack predators, while this trend is absent when predators are present.Such results argue that increased competition for food in sites that lack predators is the key driver of eye size evolution. Aplain language summaryis available for this article.more » « less
- 
            Abstract In 2020, Arizonans approved Proposition 207, the Smart and Safe Arizona Act, which legalized recreational marijuana sales. Previous research has typically used non‐spatial survey data to understand marijuana legalization voting patterns. However, voting behavior can, in part, be shaped by geographic context, or place, which is unaccounted for in aspatial survey data. We use multiscale geographically weighted regression to analyze how place shaped Proposition 207 voting behavior, independently of demographic variations across space. We find significant spatial variability in the sensitivity of voting for Proposition 207 to changes in several of the predictor variables of opposition and support for recreational marijuana legalization. We argue that local statistical modeling approaches provide a more in‐depth understanding of ballot measure voting behavior than the current use of global models. Related ArticlesBranton, Regina, and Ronald J. McGauvran. 2018. “Mary Jane Rocks the Vote: The Impact of Climate Context on Support for Cannabis Initiatives.”Politics & Policy46(2): 209–32.https://doi.org/10.1111/polp.12248.Brekken, Katheryn C., and Vanessa M. Fenley. 2020. “Part of the Narrative: Generic News Frames in the U.S. Recreational Marijuana Policy Subsystem.”Politics & Policy49(1): 6–32.https://doi.org/10.1111/polp.12388.Fisk, Jonathan M., Joseph A. Vonasek, and Elvis Davis. 2018. “‘Pot'reneurial Politics: The Budgetary Highs and Lows of Recreational Marijuana Policy Innovation.”Politics & Policy46(2): 189–208.https://doi.org/10.1111/polp.12246.more » « less
- 
            Abstract Carbon starvation posits that defoliation‐ and drought‐induced mortality results from drawing down stored non‐structural carbohydrates (NSCs), but evidence is mixed, and few studies evaluate mortality directly. We tested the relationships among defoliation severity, NSC drawdown and tree mortality by measuring NSCs in mature oak trees defoliated by an invasive insect,Lymantria dispar, across a natural gradient of defoliation severity.We collected stem and root samples from mature oaks (Quercus rubraandQ.alba) in interior forests (n = 34) and forest edges (n = 47) in central Massachusetts, USA. Total NSC (TNC; sugar + starch) stores were analysed with respect to tree size, species and defoliation severity, which ranged between 5% and 100%.TNC stores declined significantly with increasingly severe defoliation. Forest edge trees had higher TNC stores that were less sensitive to defoliation than interior forest trees, although this may be a result of differing defoliation history. Furthermore, we observed a mortality threshold of 1.5% dry weight TNC.Our study draws a direct link between insect defoliation and TNC reserves and defines a TNC threshold below which mortality is highly likely. These findings advance understanding and improve model parametrization of tree response to insect outbreaks, an increasing threat with globalization and climate change. A freePlain Language Summarycan be found within the Supporting Information of this article.more » « less
- 
            Gallery, Rachel (Ed.)Abstract Livestock grazing has been shown to alter the structure and functions of grassland ecosystems. It is well acknowledged that grazing pressure is one of the strongest drivers of ecosystem‐level effects of grazing, but few studies have assessed how grazing pressure impacts grassland biodiversity and ecosystem multifunctionality (EMF).Here, we assessed how different metrics of biodiversity (i.e., plants and soil microbes) andEMFresponded to seven different grazing treatments based on an 11‐year field experiment in semi‐arid Inner Mongolian steppe.We found that soil organic carbon, plant‐available nitrogen and plant functional diversity all decreased even at low grazing pressure, while above‐ground primary production and bacterial abundance decreased only at high levels of grazing pressure.Structural equation models revealed thatEMFwas driven by direct effects of grazing, rather than the effects of grazing on plant or microbial community composition. Grazing effects on plant functional diversity and soil microbial abundance did have moderate effects onEMF, while plant richness did not.Synthesis. Our results showed ecosystem functions differ in their sensitivity to grazing pressure, requiring a low grazing threshold to achieve multiple goals in the Eurasian steppe. Aplain language summaryis available for this article.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
