skip to main content


Search for: All records

Award ID contains: 2029543

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Network propagation has been widely used for nearly 20 years to predict gene functions and phenotypes. Despite the popularity of this approach, little attention has been paid to the question of provenance tracing in this context, e.g., determining how much any experimental observation in the input contributes to the score of every prediction.

    Results

    We design a network propagation framework with 2 novel components and apply it to predict human proteins that directly or indirectly interact with SARS-CoV-2 proteins. First, we trace the provenance of each prediction to its experimentally validated sources, which in our case are human proteins experimentally determined to interact with viral proteins. Second, we design a technique that helps to reduce the manual adjustment of parameters by users. We find that for every top-ranking prediction, the highest contribution to its score arises from a direct neighbor in a human protein-protein interaction network. We further analyze these results to develop functional insights on SARS-CoV-2 that expand on known biology such as the connection between endoplasmic reticulum stress, HSPA5, and anti-clotting agents.

    Conclusions

    We examine how our provenance-tracing method can be generalized to a broad class of network-based algorithms. We provide a useful resource for the SARS-CoV-2 community that implicates many previously undocumented proteins with putative functional relationships to viral infection. This resource includes potential drugs that can be opportunistically repositioned to target these proteins. We also discuss how our overall framework can be extended to other, newly emerging viruses.

     
    more » « less
  2. LINKED ARTICLES

    This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visithttp://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc

     
    more » « less
  3. Multi-instance learning (MIL) handles data that is organized into sets of instances known as bags. Traditionally, MIL is used in the supervised-learning setting for classifying bags which contain any number of instances. However, many traditional MIL algorithms do not scale efficiently to large datasets. In this paper, we present a novel primal–dual multi-instance support vector machine that can operate efficiently on large-scale data. Our method relies on an algorithm derived using a multi-block variation of the alternating direction method of multipliers. The approach presented in this work is able to scale to large-scale data since it avoids iteratively solving quadratic programming problems which are broadly used to optimize MIL algorithms based on SVMs. In addition, we improve our derivation to include an additional optimization designed to avoid solving a least-squares problem in our algorithm, which increases the utility of our approach to handle a large number of features as well as bags. Finally, we derive a kernel extension of our approach to learn nonlinear decision boundaries for enhanced classification capabilities. We apply our approach to both synthetic and real-world multi-instance datasets to illustrate the scalability, promising predictive performance, and interpretability of our proposed method. 
    more » « less
    Free, publicly-accessible full text available August 26, 2024
  4. Histopathological image analysis is critical in cancer diagnosis and treatment. Due to the huge size of histopathological images, most existing works analyze the whole slide pathological image (WSI) as a bag and its patches are considered as instances. However, these approaches are limited to analyzing the patches in a fixed shape, while the malignant lesions can form varied shapes. To address this challenge, we propose the Multi-Instance Multi-Shape Support Vector Machine (MIMSSVM) to analyze the multiple images (instances) jointly where each instance consists of multiple patches in varied shapes. In our approach, we can identify the varied morphologic abnormalities of nuclei shapes from the multiple images. In addition to the multi-instance multi-shape learning capability, we provide an efficient algorithm to optimize the proposed model which scales well to a large number of features. Our experimental results show the proposed MIMSSVM method outperforms the existing SVM and recent deep learning models in histopathological classification. The proposed model also identifies the tissue segments in an image exhibiting an indication of an abnormality which provides utility in the early detection of malignant tumors. 
    more » « less
  5. Linear discriminant analysis (LDA) is widely used for dimensionality reduction under supervised learning settings. Traditional LDA objective aims to minimize the ratio of squared Euclidean distances that may not perform optimally on noisy data sets. Multiple robust LDA objectives have been proposed to address this problem, but their implementations have two major limitations. One is that their mean calculations use the squared l2-norm distance to center the data, which is not valid when the objective does not use the Euclidean distance. The second problem is that there is no generalized optimization algorithm to solve different robust LDA objectives. In addition, most existing algorithms can only guarantee the solution to be locally optimal, rather than globally optimal. In this paper, we review multiple robust loss functions and propose a new and generalized robust objective for LDA. Besides, to better remove the mean value within data, our objective uses an optimal way to center the data through learning. As one important algorithmic contribution, we derive an efficient iterative algorithm to optimize the resulting non-smooth and non-convex objective function. We theoretically prove that our solution algorithm guarantees that both the objective and the solution sequences converge to globally optimal solutions at a sub-linear convergence rate. The experimental results demonstrate the effectiveness of our new method, achieving significant improvements compared to the other competing methods. 
    more » « less
  6. Multi-instance learning (MIL) is an area of machine learning that handles data that is organized into sets of instances known as bags. Traditionally, MIL is used in the supervised-learning setting and is able to classify bags which can contain any number of instances. This property allows MIL to be naturally applied to solve the problems in a wide variety of real-world applications from computer vision to healthcare. However, many traditional MIL algorithms do not scale efficiently to large datasets. In this paper we present a novel Primal-Dual Multi-Instance Support Vector Machine (pdMISVM) derivation and implementation that can operate efficiently on large scale data. Our method relies on an algorithm derived using a multi-block variation of the alternating direction method of multipliers (ADMM). The approach presented in this work is able to scale to large-scale data since it avoids iteratively solving quadratic programming problems which are generally used to optimize MIL algorithms based on SVMs. In addition, we modify our derivation to include an additional optimization designed to avoid solving a least-squares problem during our algorithm; this optimization increases the utility of our approach to handle a large number of features as well as bags. Finally, we apply our approach to synthetic and real-world multi-instance datasets to illustrate the scalability, promising predictive performance, and interpretability of our proposed method. We end our discussion with an extension of our approach to handle non-linear decision boundaries. Code and data for our methods are available online at: https://github.com/minds-mines/pdMISVM.jl. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    In order to manage the public health crisis associated with COVID-19, it is critically important that healthcare workers can quickly identify high-risk patients in order to provide effective treatment with limited resources. Statistical learning tools have the potential to help predict serious infection early-on in the progression of the disease. However, many of these techniques are unable to take full advantage of temporal data on a per-patient basis as they handle the problem as a single-instance classification. Furthermore, these algorithms rely on complete data to make their predictions. In this work, we present a novel approach to handle the temporal and missing data problems, simultaneously; our proposed Simultaneous Imputation-Multi Instance Support Vector Machine method illustrates how multiple instance learning techniques and low-rank data imputation can be utilized to accurately predict clinical outcomes of COVID-19 patients. We compare our approach against recent methods used to predict outcomes on a public dataset with a cohort of 361 COVID-19 positive patients. In addition to improved prediction performance early on in the progression of the disease, our method identifies a collection of biomarkers associated with the liver, immune system, and blood, that deserve additional study and may provide additional insight into causes of patient mortality due to COVID-19. We publish the source code for our method online. 
    more » « less
  9. null (Ed.)
    Nonnegative Matrix Factorization (NMF) is broadly used to determine class membership in a variety of clustering applications. From movie recommendations and image clustering to visual feature extractions, NMF has applications to solve a large number of knowledge discovery and data mining problems. Traditional optimization methods, such as the Multiplicative Updating Algorithm (MUA), solves the NMF problem by utilizing an auxiliary function to ensure that the objective monotonically decreases. Although the objective in MUA converges, there exists no proof to show that the learned matrix factors converge as well. Without this rigorous analysis, the clustering performance and stability of the NMF algorithms cannot be guaranteed. To address this knowledge gap, in this article, we study the factor-bounded NMF problem and provide a solution algorithm with proven convergence by rigorous mathematical analysis, which ensures that both the objective and matrix factors converge. In addition, we show the relationship between MUA and our solution followed by an analysis of the convergence of MUA. Experiments on both toy data and real-world datasets validate the correctness of our proposed method and its utility as an effective clustering algorithm. 
    more » « less
  10. null (Ed.)