Abstract N‐phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiopheneS‐oxide upon irradiation with UV‐A light, and dibenzothiopheneS‐oxide upon further irradiation releases triplet atomic oxygen. Thus,N‐phenyl dibenzothiophene sulfoximine exhibits a rare dual‐release capability in its photochemistry. In this work,N‐substituted dibenzothiophene sulfoximine derivatives are irradiated with UV‐A light to compare their photochemistry and quantum yield of dibenzothiopheneS‐oxide production with that ofN‐phenyl dibenzothiophene sulfoximine. BothN‐aryl andN‐alkyl derivatives of dibenzothiophene sulfoximine are examined to observe their effects on the quantum yield of the photolysis reaction. Adding electron withdrawingN‐aryl substituents is shown to increase the quantum yield of dibenzothiopheneS‐oxide production, while adding electron donatingN‐aryl substituents is shown to decrease the quantum yield. The quantum yield was slightly lowered or not increased by mostN‐alkyl substituents. Furthermore, the quantum yield was not augmented by branching and steric hindrance effects associated with theN‐alkyl substituents. These results suggest that electronic modulation of the sulfoximine bonds affects the observed photolysis reaction.
more »
« less
Two‐step Two‐intermediate Photorelease Bolm‐McCulla Reaction: Dual Release of Nitrene and Atomic Oxygen Reactive Intermediates
Abstract This article is a highlight of the paper by Isor et al. in this issue ofPhotochemistry and Photobiology. It describes the photolysis of a dibenzothiophene sulfoximine (bearingN‐phenyl imino andS‐oxide groups) to produce two reactive intermediates in tandem. The sulfoximine undergoes a S–N and S–O photocleavage to release phenyl nitrene and atomic oxygen [O(3P)]. The phenyl nitrene dimerizes to azobenzene or is trapped by diethylamine to reach an azepine. From there, atomic oxygen arises in a secondary photolysis of dibenzothiophene sulfoxide. A computational analysis also reveals that the S–N bond is labile for initial nitrene release, with the secondary release of atomic oxygen by S–O cleavage. Whether future sulfoximine scaffolds can produce the reverse order release of O(3P) then nitrene, or release both simultaneously, is yet to be established. Nonetheless, molecules with dual‐intermediate release, such as coupled photoaffinity labeling and cellular oxidation, are worth pursuing.
more »
« less
- Award ID(s):
- 1856765
- PAR ID:
- 10445898
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Photochemistry and Photobiology
- Volume:
- 97
- Issue:
- 6
- ISSN:
- 0031-8655
- Page Range / eLocation ID:
- p. 1453-1455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sulfoximines are popular scaffolds in drug discovery due to their hydrogen bonding properties and chemical stability. In recent years, the role of reactive intermediates such as nitrenes has been studied in the synthesis and degradation of sulfoximines. In this work, the photochemistry ofN‐phenyl dibenzothiophene sulfoximine [5‐(phenylimino)‐5H‐5λ4‐dibenzo[b,d]thiopheneS‐oxide] was analyzed. The structure resembles a combination ofN‐phenyl iminodibenzothiophene and dibenzothiopheneS‐oxide, which generate nitrene and O(3P) upon UV‐A irradiation, respectively. The photochemistry ofN‐phenyl dibenzothiophene sulfoximine was explored by monitoring the formation of azobenzene, a photoproduct of triplet nitrene, using direct irradiation and sensitized experiments. The reactivity profile was further studied through direct irradiation experiments in the presence of diethylamine (DEA) as a nucleophile. The studies demonstrated thatN‐phenyl dibenzothiophene sulfoximine underwent S–N photocleavage to release singlet phenyl nitrene which formed a mixture of azepines in the presence of DEA and generated moderate amounts of azobenzene in the absence of DEA to indicate formation of triplet phenyl nitrene.more » « less
-
Abstract Photodeoxygenation of dibenzothiopheneS‐oxide (DBTO) is believed to produce ground‐state atomic oxygen [O(3P)] in solution. Compared with other reactive oxygen species (ROS), O(3P) is a unique oxidant as it is potent and selective. Derivatives of DBTO have been used as O(3P)‐precursors to oxidize variety of molecules, including plasmid DNA, proteins, lipids, thiols, and other small organic molecules. Unfortunately, the photodeoxygenation of DBTO requires ultraviolet irradiation, which is not an ideal wavelength range for biological systems, and has a low quantum yield of approximately 0.003. In this work, benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide, benzo[b]naphtho[2,1‐d]selenopheneSe‐oxide, dinaphtho[2,3‐b:2’,3’‐d]selenopheneSe‐oxide, and perylo[1,12‐b,c,d]selenopheneSe‐oxide were synthesized, and their ability to utilize visible light for generating O(3P) was interrogated. Benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide produces O(3P) upon irradiation centered at 420 nm. Additionally, benzo[b]naphtho[1,2‐d]selenopheneSe‐oxide, benzo[b]naphtho[2,1‐d]selenopheneSe‐oxide, and dinaphtho[2,3‐b:2’,3’‐d]selenopheneSe‐oxide produce O(3P) when irradiated with UVA light and have quantum yields of photodeoxygenation ranging from 0.009 to 0.33. This work increases the utility of photodeoxygenation by extending the range of wavelengths that can be used to generate O(3P) in solution.more » « less
-
Abstract Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2‐N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.more » « less
-
Ground-state atomic oxygen [O( 3 P)] is an oxidant whose formation in solution was proposed but never proven. Polymer nanocapsules were used to physically separate dibenzothiophene S-oxide (DBTO), a source of O( 3 P), from an O( 3 P)-accepting molecule. Irradiation of polymer nanocapsules loaded with DBTO resulted in oxidation of the O( 3 P)-acceptor placed outside nanocapsules. The results rule out a direct oxygen atom transfer mechanism and are consistent with freely diffusing O( 3 P) as the oxidant.more » « less
An official website of the United States government
