Cholesteric liquid crystalline elastomers (CLCEs) exhibit selective reflection due to a periodic variation of the refractive index throughout the thickness of the material. CLCEs can be formulated and prepared to reflect light in the UV, visible, and infrared regions of the electromagnetic spectrum by simply adjusting the concentration of the chiral species. This report details the synthesis and preparation of appropriately thick CLCEs that maximize reflection in both the short-wave and mid-wave infrared (SWIR, MWIR) regions of the electromagnetic spectrum. As elastomers, fully solid CLCEs can be mechanically deformed to tune the selective reflection. This report details approaches to tune selective reflection, including mechanical deformation, incidence angle, thermochromism, and dielectric actuation. Generally, the optomechanical response of the CLCE at longer pitch lengths (e.g., infrared reflecting) is comparatively less than that of prior examinations of analogous compositions with a shorter pitch. Furthermore, the contribution of modulus and dielectric breakdown to electromechanical response is examined.
more »
« less
Large Range Thermochromism in Liquid Crystalline Elastomers Prepared with Intra‐Mesogenic Supramolecular Bonds
Abstract Liquid crystalline elastomers (LCEs) that retain the cholesteric phase (CLCEs) are soft, polymeric materials that retain periodic structure and exhibit a selective reflection. While prior studies have examined thermochromism in CLCEs, the association of temperature change and reflection wavelength shift has been limited to 1.4 nm °C−1. Here, CLCEs with intra‐mesogenic supramolecular bonds are prepared to enhance tunability as well triple the rate (e.g., 4.8 nm °C−1). Specifically, these materials incorporate liquid crystalline monomers based on dimerized oxy‐benzoic acid (OBA) derivatives. Increasing the concentration of the OBA comonomers increases the magnitude of red‐shifting thermochromism of the selective reflection. At and above a threshold concentration, the selective reflection in the CLCEs can disappear upon heating, analogous to on‐off “switching.” Further, the introduction of the supramolecular bonds within the CLCE enable mechanical programming and enhanced one‐time tunable thermochromism via a one‐way shape memory process. Accordingly, this research could enable functional use in low temperature sensitive optical elements, fail‐safe thermal indicators for food packaging, and smart window coatings.
more »
« less
- Award ID(s):
- 2105369
- PAR ID:
- 10445916
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 33
- Issue:
- 51
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cholesteric liquid crystals (CLCs) exhibit Bragg reflection due to their spontaneous self-assembly into a one-dimensional photonic structure. Retaining this cholesteric order in a polymer network requires functionalizing liquid crystals with reactive end groups. However, conventional chemistries for synthesizing cholesteric liquid crystalline polymers often result in poor surface alignment and reduced optical quality. In this work, we investigate a thiol−ene step-growth polymerization approach to fabricate cholesteric liquid crystalline elastomers (CLCEs) with tunable mechanical properties and improved optical quality. By varying the cross-link density, we systematically study the effects on haze, cross-linking degree, and mechanical response. Compared to existing cholesteric liquid crystalline polymers, the thiol−ene-based CLCEs exhibit enhanced surface alignment, reduced haze, and greater mechanical tunability. These materials are further benchmarked against CLCEs synthesized via thiol−acrylate chain transfer polymerization, highlighting the advantages of the thiol−ene reaction for achieving precisely controlled properties in cholesteric polymer networks.more » « less
-
The directional deformation of liquid crystalline elastomers (LCEs) is predicated on alignment, enforced by various processing techniques. Specifically, surface-aligned LCEs can exhibit higher temperature thermomechanical responses and weakened strain−temperature coupling in comparison to LCEs subjected to mechanical or rheological alignment. Recently, we reported enhanced stimuli response of mechanically aligned LCEs containing supramolecular liquid crystals. Here, we prepare supramolecular LCEs via surface-enforced alignment to study the impact of the supramolecular bond strength and intermolecular forces. This was evaluated using oxybenzoic acid (OBA) derivatives with and without pendant methyl groups as well as via oxybenzoic acid-pyridine complexes. Increased incorporation of supramolecular mesogens reduces the isotropic transition temperature and generally increases the strain−temperature coupling. The number of elastically active strands per unit volume, hydrogen bond conformations, and network morphology are affected by the supramolecular mesogens and influence the observed stimuli response. Overall, reduced intermolecular interactions correlate with more desirable actuation properties, demonstrating the influence of the supramolecular mesogen’s structure.more » « less
-
Abstract The sensitivity and responsiveness of living cells to environmental changes are enabled by dynamic protein structures, inspiring efforts to construct artificial supramolecular protein assemblies. However, despite their sophisticated structures, designed protein assemblies have yet to be incorporated into macroscale devices for real-life applications. We report a 2D crystalline protein assembly ofC98/E57/E66L-rhamnulose-1-phosphate aldolase (CEERhuA) that selectively blocks or passes molecular species when exposed to a chemical trigger.CEERhuA crystals are engineered via cobalt(II) coordination bonds to undergo a coherent conformational change from a closed state (pore dimensions <1 nm) to an ajar state (pore dimensions ~4 nm) when exposed to an HCN(g) trigger. When layered onto a mesoporous silicon (pSi) photonic crystal optical sensor configured to detect HCN(g), the 2DCEERhuA crystal layer effectively blocks interferents that would otherwise result in a false positive signal. The 2DCEERhuA crystal layer opens in selective response to low-ppm levels of HCN(g), allowing analyte penetration into the pSi sensor layer for detection. These findings illustrate that designed protein assemblies can function as dynamic components of solid-state devices in non-aqueous environments.more » « less
-
NoElastocaloric cooling is a promising solid-state alternative to vapor-compression refrigeration. In conventional systems, such as natural rubber, deformation induces entropy change accompanied by temperature release. Unloading the material restores the entropic state and is accompanied by cooling. Inverse elastocaloric effects have been detailed in shape memory alloys, where deformation induces loss of order and cooling. Here, we report on a distinctive inverse elastocaloric effect in liquid crystalline elastomers (LCEs) containing supramolecular hydrogen bonds. Upon deformation, the supramolecular LCE exhibits initial organization but then disorganizes as the intramesogenic hydrogen bonds are broken. Due to the liquid crystalline nature of the dimeric supramolecular bonds, the mechanochemical bond breakage manifests in a disruption in order. By disrupting the extent of liquid crystallinity in the system, we hypothesize that the network disorganizes to the deformation (e.g., entropy increases) and produces an inverse elastocaloric output.t Availablemore » « less
An official website of the United States government
