skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy pathways modulate the resilience of stream invertebrate communities to drought
Abstract While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer‐ or detritus‐based (i.e. ‘green’ or ‘brown’ food webs, respectively), or both (i.e. ‘multi‐channel’ food web).Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels.We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness and diversity.Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience.Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fuelled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates.  more » « less
Award ID(s):
1802872 1754389 2207232
PAR ID:
10445952
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Animal Ecology
Volume:
90
Issue:
9
ISSN:
0021-8790
Page Range / eLocation ID:
p. 2053-2064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Empirical evidence and theory suggest that climate warming and an increase in the frequency and duration of drying events will alter the metabolic balance of freshwater ecosystems. However, the impacts of climate change on ecosystem metabolism may depend on whether energy inputs are of autochthonous or allochthonous origin. To date, few studies have examined how warming and drying may interact to alter stream metabolism, much less how their impacts may depend on the energy‐base of the food web.To address this research gap, we conducted a multi‐factorial experiment using outdoor mesocosms to investigate the individual and synergistic effects of warming and drought on metabolic processes in stream mesocosms with green (algal‐based) vs. mixed (algal‐ and detritus‐based) vs. brown (detritus‐based) energy pathways.We set up 48 mesocosms with one of three different levels of shade and leaf litter input combinations to create mesocosms with different primary energy channels. In addition, we warmed half of the mesocosms by ~2–3°C. We assessed changes in ecosystem respiration (ER), gross primary production (GPP), net ecosystem production (NEP) and organic matter biomass in warmed and ambient temperature mesocosms before a 24 day drying event and after rewetting.Surprisingly, experimental warming had little effect on metabolic processes. Drying, however, led to decreased rates of ER and GPP and led to an overall reduction in NEP. Although the effects of drying were similar across energy channel treatments, reductions in ER and GPP were primarily driven by decreases in biomass of benthic and filamentous algae.Overall, we demonstrate that drying led to lower rates of NEP in mesocosms regardless of energy inputs. While warming showed little effect in our study, our results suggest that an increase in the frequency of stream drying events could greatly alter the metabolic balance of many aquatic ecosystems. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Climate change is increasing the frequency, severity, and extent of wildfires and drought in many parts of the world, with numerous repercussions for the physical, chemical, and biological characteristics of streams. However, information on how these perturbations affect top predators and their impacts on lower trophic levels in streams is limited.The top aquatic predator in southern California streams is nativeOncorhynchus mykiss, the endangered southern California steelhead trout (trout). To examine relationships among the distribution of trout, environmental factors, and stream invertebrate resources and assemblages, we sampled pools in 25 stream reaches that differed in the presence (nine reaches) or absence (16 reaches) of trout over 12 years, including eight reaches where trout were extirpated during the study period by drought or post‐fire flood disturbances.Trout were present in deep pools with high water and habitat quality. Invertebrate communities in trout pools were dominated by a variety of medium‐sized collector–gatherer and shredder invertebrate taxa with non‐seasonal life cycles, whereas tadpoles and large, predatory invertebrates (Odonata, Coleoptera, Hemiptera [OCH]), often with atmospheric breather traits, were more abundant in troutless than trout pools.Structural equation modelling of the algal‐based food web indicated a trophic cascade from trout to predatory invertebrates to collector–gatherer taxa and weaker direct negative trout effects on grazers; however, both grazers and collector–gatherers also were positively related to macroalgal biomass. Structural equation modelling also suggested that bottom‐up interactions and abiotic factors drove the detritus‐based food web, with shredder abundance being positively related to leaf litter (coarse particulate organic matter) levels, which, in turn, were positively related to canopy cover and negatively related to flow. These results emphasise the context dependency of trout effects on prey communities and of the relative importance of top‐down versus bottom‐up interactions on food webs, contingent on environmental conditions (flow, light, nutrients, disturbances) and the abundances and traits of component taxa.Invertebrate assemblage structure changed from a trout to a troutless configuration within a year or two after trout were lost owing to post‐fire scouring flows or drought. Increases in OCH abundance after trout were lost were much more variable after drought than after fire. The reappearance of trout in one stream resulted in quick, severe reductions in OCH abundance.These results indicate that climate‐change induced disturbances can result in the extirpation of a top predator, with cascading repercussions for stream communities and food webs. This study also emphasises the importance of preserving or restoring refuge habitats, such as deep, shaded, perennial, cool stream pools with high habitat and water quality, to prevent the extirpation of sensitive species and preserve native biodiversity during a time of climate change. 
    more » « less
  3. Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly supportgreen food websbased on primary production andbrown food websbased on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs. 
    more » « less
  4. Abstract Climate warming is predicted to alter routing and flows of energy through food webs because of the critical and varied effects of temperature on physiological rates, community structure, and trophic dynamics. Few studies, however, have experimentally assessed the net effect of warming on energy flux and food web dynamics in natural intact communities. Here, we test how warming affects energy flux and the trophic basis of production in a natural invertebrate food web by experimentally heating a stream reach in southwest Iceland by ~4°C for 2 yr and comparing its response to an unheated reference stream. Previous results from this experiment showed that warming led to shifts in the structure of the invertebrate assemblage, with estimated increases in total metabolic demand but no change in annual secondary production. We hypothesized that elevated metabolic demand and invariant secondary production would combine to increase total consumption of organic matter in the food web, if diet composition did not change appreciably with warming. Dietary composition of primary consumers indeed varied little between streams and among years, with gut contents primarily consisting of diatoms (72.9%) and amorphous detritus (19.5%). Diatoms dominated the trophic basis of production of primary consumers in both study streams, contributing 79–86% to secondary production. Although warming increased the flux of filamentous algae within the food web, total resource consumption did not increase as predicted. The neutral net effect of warming on total energy flow through the food web was a result of taxon‐level variation in responses to warming, a neutral effect on total invertebrate production, and strong trophic redundancy within the invertebrate assemblage. Thus, food webs characterized by a high degree of trophic redundancy may be more resistant to the effects of climate warming than those with more diverse and specialized consumers. 
    more » « less
  5. Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits.Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms.We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way.The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers.As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment. 
    more » « less