Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI 3 ) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance that is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3 . Our work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.
more »
« less
Large Magnetoresistance in Scandium Nitride Magnetic Tunnel Junctions Using First Principles
Abstract The state‐of‐the‐art magnetic tunnel junction, a cornerstone of spintronic devices and circuits, uses a magnesium oxide tunnel barrier that provides a uniquely large tunnel magnetoresistance at room temperature. However, the wide bandgap and band alignment of magnesium oxide‐iron systems increases the resistance‐area product and creates variability and breakdown challenges. Here, the authors study using first principles narrower‐bandgap scandium nitride (ScN) transport properties in magnetoresistive junctions in comparison to magnesium oxide. The results show a high magnetoresistance in Fe/ScN/Fe via Δ1and symmetry filtering with low wave function decay rates, suggesting scandium nitride could be a new barrier material for spintronic devices.
more »
« less
- Award ID(s):
- 1720595
- PAR ID:
- 10445999
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Theory and Simulations
- Volume:
- 4
- Issue:
- 11
- ISSN:
- 2513-0390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Unlike naturally occurring oxide crystals such as ruby and gemstones, there are no naturally occurring nitride crystals because the triple bond of the nitrogen molecule is one of the strongest bonds in nature. Here, we report that when the transition metal scandium is subjected to molecular nitrogen, it self-catalyzes to break the nitrogen triple bond to form highly crystalline layers of ScN, a semiconductor. This reaction proceeds even at room temperature. Self-activated ScN films have a twin cubic crystal structure, atomic layering, and electronic and optical properties comparable to plasma-based methods. We extend our research to showcase Sc’s scavenging effect and demonstrate self-activated ScN growth under various growth conditions and on technologically significant substrates, such as 6H–SiC, AlN, and GaN. Ab initio calculations elucidate an energetically efficient pathway for the self-activated growth of crystalline ScN films from molecular N2. The findings open a new pathway to ultralow-energy synthesis of crystalline nitride semiconductor layers and beyond.more » « less
-
Abstract Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-xthin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-xshow the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices.more » « less
-
Abstract 2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal‐oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large‐scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo‐oersted, attributed to weak intergranular exchange coupling. Field‐driven Néel‐type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single‐crystalline counterparts. Current‐assisted magnetization switching, enabled by a substantial spin–orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large‐scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.more » « less
-
Abstract Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon‐based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon‐compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three‐terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter‐deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room‐temperature TMR effect. First‐principles calculations explain the TMR in terms of the momentum‐resolved spin‐dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.more » « less
An official website of the United States government
