skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Honest leave‐one‐out cross‐validation for estimating post‐tuning generalization error
Many machine learning models have tuning parameters to be determined by the training data, and cross‐validation (CV) is perhaps the most commonly used method for selecting tuning parameters. This work concerns the problem of estimating the generalization error of a CV‐tuned predictive model. We propose to use an honest leave‐one‐out cross‐validation framework to produce a nearly unbiased estimator of the post‐tuning generalization error. By using the kernel support vector machine and the kernel logistic regression as examples, we demonstrate that the honest leave‐one‐out cross‐validation has very competitive performance even when competing with the state‐of‐the‐art .632+ estimator.  more » « less
Award ID(s):
2015120 1915842
PAR ID:
10446220
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
10
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Steel, Mark (Ed.)
    Bayesian cross-validation (CV) is a popular method for predictive model assessment that is simple to implement and broadly applicable. A wide range of CV schemes is available for time series applications, including generic leave-one-out (LOO) and K-fold methods, as well as specialized approaches intended to deal with serial dependence such as leave-future-out (LFO), h-block, and hv-block. Existing large-sample results show that both specialized and generic methods are applicable to models of serially-dependent data. However, large sample consistency results overlook the impact of sampling variability on accuracy in finite samples. Moreover, the accuracy of a CV scheme depends on many aspects of the procedure. We show that poor design choices can lead to elevated rates of adverse selection. In this paper, we consider the problem of identifying the regression component of an important class of models of data with serial dependence, autoregressions of order p with q exogenous regressors (ARX(p,q)), under the logarithmic scoring rule. We show that when serial dependence is present, scores computed using the joint (multivariate) density have lower variance and better model selection accuracy than the popular pointwise estimator. In addition, we present a detailed case study of the special case of ARX models with fixed autoregressive structure and variance. For this class, we derive the finite-sample distribution of the CV estimators and the model selection statistic. We conclude with recommendations for practitioners. 
    more » « less
  2. Tuning parameter selection is of critical importance for kernel ridge regression. To date, a data-driven tuning method for divide-and-conquer kernel ridge regression (d-KRR) has been lacking in the literature, which limits the applicability of d-KRR for large datasets. In this article, by modifying the generalized cross-validation (GCV) score, we propose a distributed generalized cross-validation (dGCV) as a data-driven tool for selecting the tuning parameters in d-KRR. Not only the proposed dGCV is computationally scalable for massive datasets, it is also shown, under mild conditions, to be asymptotically optimal in the sense that minimizing the dGCV score is equivalent to minimizing the true global conditional empirical loss of the averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer framework. Supplemental materials for this article are available online. 
    more » « less
  3. Tuning parameter selection is of critical importance for kernel ridge regression. To this date, data driven tuning method for divide-and-conquer kernel ridge regression (d-KRR) has been lacking in the literature, which limits the applicability of d-KRR for large datasets. In this article, by modifying the generalized crossvalidation (GCV) score, we propose a distributed generalized cross-validation (dGCV) as a data-driven tool for selecting the tuning parameters in d-KRR. Not only the proposed dGCV is computationally scalable for massive datasets, it is also shown, under mild conditions, to be asymptotically optimal in the sense that minimizing the dGCV score is equivalent to minimizing the true global conditional empirical loss of the averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer framework. Supplemental materials for this article are available online. 
    more » « less
  4. We derive information theoretic generalization bounds for supervised learning algorithms based on a new measure of leave-one-out conditional mutual information (loo-CMI). Contrary to other CMI bounds, which are black-box bounds that do not exploit the structure of the problem and may be hard to evaluate in practice, our loo-CMI bounds can be computed easily and can be interpreted in connection to other notions such as classical leave-one-out cross-validation, stability of the optimization algorithm, and the geometry of the loss-landscape. It applies both to the output of training algorithms as well as their predictions. We empirically validate the quality of the bound by evaluating its predicted generalization gap in scenarios for deep learning. In particular, our bounds are non-vacuous on large-scale image-classification tasks. 
    more » « less
  5. Summary Cross‐validation (CV) is one of the most widely used techniques in statistical learning for estimating the test error of a model, but its behavior is not yet fully understood. It has been shown that standard confidence intervals for test error using estimates from CV may have coverage below nominal levels. This phenomenon occurs because each sample is used in both the training and testing procedures during CV and as a result, the CV estimates of the errors become correlated. Without accounting for this correlation, the estimate of the variance is smaller than it should be. One way to mitigate this issue is by estimating the mean squared error of the prediction error instead using nested CV. This approach has been shown to achieve superior coverage compared to intervals derived from standard CV. In this work, we generalize the nested CV idea to the Cox proportional hazards model and explore various choices of test error for this setting. 
    more » « less