Abstract Photonic crystals (PCs) constructed from colloidal building blocks have attracted increasing attention because their brilliant structural colors may find broad applications in paints, sensors, displays, and security devices. However, producing high‐quality structural colors on flexible substrates such as textiles in an efficient and scalable manner remains a challenge. Here a robust and ultrafast approach to produce industrial‐scale colloidal PCs by the shear‐induced assembly of liquid colloidal crystals of polystyrene beads pre‐formed spontaneously over a critical volume fraction is demonstrated. The pre‐crystallization of colloidal crystals allows their efficient assembly into large‐scale PCs on flexible fabric substrates under shear force. Further, by programming the wettability of the fabric substrate with hydrophilic–hydrophobic regions, this shear‐based assembly strategy can conveniently generate pre‐designed patterns of complex structural colors. This assembly strategy brings structural coloration to flexible fabrics at a scale suitable for commercial applications; therefore, it holds the potential to revolutionize the coloration technology in the textile industry.
more »
« less
Multicolor Photonic Pigments for Rotation‐Asymmetric Mechanochromic Devices
Abstract Photonic crystals are extensively explored to replace inorganic pigments and organic dyes as coloring elements in printing, painting, sensing, and anti‐counterfeiting due to their brilliant structural colors, chemical stability, and environmental friendliness. However, most existing photonic‐crystal‐based pigments can only display monochromatic colors once made, and generating multicolors has to start with designing different building blocks. Here, a novel photonic pigment featuring highly tunable structural colors in the entire visible spectrum, made by the magnetic assembly of monodisperse nanorods into body‐centered‐tetragonal photonic crystals, is reported. Their prominent magnetic and crystal anisotropy makes it efficient to generate multicolors using one photonic pigment by magnetically controlling the crystal orientation. Further, the combination of angle‐dependent diffraction and magnetic orientation control enables the design of rotation‐asymmetric photonic films that display distinct patterns and encrypted information in response to rotation. The efficient multicolor generation through precise orientational control makes this novel photonic pigment promising in developing high‐performance structural‐colored materials and optical devices.
more »
« less
- PAR ID:
- 10446287
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 34
- Issue:
- 4
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Photonic crystals—a class of materials whose optical properties derive from their structure in addition to their composition—can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials.more » « less
-
Icosahedral colloidal clusters are a new class of spherical colloidal crystals. This cluster allows for potentially superior optical properties in comparison to conventional onion-like colloidal supraballs because of the quasi-crystal structure. However, the characterization of the cluster as an optical material has until now not been achieved. Here we successfully produce icosahedral clusters by assembling silica particles using bulk water-in-oil emulsion droplets and systematically characterize their optical properties. We exploit a water-saturated oil phase to control droplet drying, thereby preparing clusters at room temperature. In comparison to conventional onion-like supraballs with a similar size, the icosahedral clusters exhibit relatively strong structural colors with weak nonresonant scattering. Simulations prove that the crystalline array inside the icosahedral cluster strengthens the collective specular diffraction. To further improve color saturation, the silica particles constituting the cluster are coated with a thin-film carbon shell. The carbon shell acts as a broad-band absorber and reduces incoherent scattering with long optical paths, resulting in vibrant blue, green, and red colors comparable to inorganic chemical pigments.more » « less
-
Photonic balls are spheres tens of micrometers in diameter containing assemblies of nanoparticles or nanopores with a spacing comparable to the wavelength of light. When these nanoscale features are disordered, but still correlated, the photonic balls can show structural color with low angle-dependence. Their colors, combined with the ability to add them to a liquid formulation, make photonic balls a promising new type of pigment particle for paints, coatings, and other applications. However, it is challenging to predict the color of materials made from photonic balls because the sphere geometry and multiple scattering must be accounted for. To address these challenges, we develop a multiscale modeling approach involving Monte Carlo simulations of multiple scattering at two different scales: we simulate multiple scattering and absorption within a photonic ball and then use the results to simulate multiple scattering and absorption in a film of photonic balls. After validating against experimental spectra, we use the model to show that films of photonic balls scatter light in fundamentally different ways than do homogeneous films of nanopores or nanoparticles, because of their increased surface area and refraction at the interfaces of the balls. Both effects tend to sharply reduce color saturation relative to a homogeneous nanostructured film. We show that saturated colors can be achieved by placing an absorber directly in the photonic balls and mitigating surface roughness. With these design rules, we show that photonic-ball films have an advantage over homogeneous nanostructured films: their colors are even less dependent on the angle.more » « less
-
The study of twisted bilayer 2D materials has revealed many interesting physics properties. A twisted moiré photonic crystal is an optical analog of twisted bilayer 2D materials. The optical properties in twisted photonic crystals have not yet been fully elucidated. In this paper, we generate 2D twisted moiré photonic crystals without physical rotation and simulate their photonic band gaps in photonic crystals formed at different twisted angles, different gradient levels, and different dielectric filling factors. At certain gradient levels, interface modes appear within the photonic band gap. The simulation reveals “tic tac toe”-like and “traffic circle”-like modes as well as ring resonance modes. These interesting discoveries in 2D twisted moiré photonic crystal may lead toward its application in integrated photonics.more » « less