Abstract Seismic anisotropy is controlled by aligned rock‐forming minerals, which most studies attribute to solid‐state shear with less consideration for magmatic fabric in plutonic rocks (rigid‐body rotation of crystals in the presence of melt). Our study counters this traditional solid‐state bias by evaluating contributions from fossil magmatic fabric. We collected samples from various tectonic settings, identified mineral orientations with electron backscatter diffraction and neutron diffraction, and calculated their bulk rock elastic properties. Results indicate that magmatic fabric may lead to moderate to strong anisotropy (3%–9%), comparable to solid‐state deformation. Also, magmatically aligned feldspar may cause foliation‐perpendicular fast velocity, a unique orientation that contrasts with a fast foliation typical of solid‐state deformation. Therefore, magmatic fabric may be more relevant to seismic anisotropy than previously recognized. Accordingly, increased considerations of magmatic fabric in arcs, batholiths, and other tectonic settings can change and potentially improve the prediction, observation, and interpretation of crustal seismic anisotropy.
more »
« less
From Crystals to Crustal‐Scale Seismic Anisotropy: Bridging the Gap Between Rocks and Seismic Studies With Digital Geologic Map Data in Colorado
Abstract Deep continental crustal structures are enigmatic due to lack of direct exposures and limited tools to investigate them remotely. Seismic waves can sample these rocks, but most seismic methods focus on coarse crustal structures while laboratory measurements concentrate on crystal‐scale rock properties, and little work has been conducted to bridge this interpretation gap. In some places, geologic maps of crystalline basement provide samples of the intermediate‐scale fabrics and structures that may represent in situ deep crust. However, previous research has not considered natural geometric variations from map data, nor is this heterogeneity typically included in map‐scale seismic property calculations. Here, we test how map‐scale fabrics influence crustal seismic anisotropy in Colorado by analyzing structural data from geologic maps, combining those data with bulk rock elastic tensors to calculate map‐scale seismic properties, and evaluating the resulting comparisons with observed receiver function A1 (360° periodic) arrivals. Crystalline fabrics, predicted seismic properties, and tectonic structures positively correlate with shallow and deep crustal A1 arrivals. Additionally, widespread correlations occur between mapped fault traces and regional foliations, implying that preexisting mechanical heterogeneity may have strongly influenced subsequent reactivation. We interpret that various mapped geologic contact types (e.g., lithologic and structural) generate A1 arrivals and that multiple parallel features (e.g., faults, foliations, and intrusions) contribute to a seismically visible tectonic grain. Therefore, Colorado's exhumed basement, as expressed in outcrops and maps, offers insight into modern deep crustal geological and geophysical structure.
more »
« less
- Award ID(s):
- 1735890
- PAR ID:
- 10446309
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Tectonics
- Volume:
- 41
- Issue:
- 1
- ISSN:
- 0278-7407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study addresses a significant gap in understanding the features of the south‐central Cascadia subduction zone, a region characterized by complex geologic, tectonic, and seismic transitions both offshore and onshore. Unlike other segments along this margin, this area lacks a 3‐D velocity model to delineate its structural and geological features on a fine scale. To address this void, we developed a high‐resolution 3‐D P‐wave velocity model using active source seismic data from ship‐borne seismic shots recorded on temporary and permanent onshore seismic stations and ocean‐bottom seismometers. Our model shows velocity variations across the region with distinct velocity‐depth profiles for the Siletz, Franciscan, and Klamath terranes in the overlying plate. We identified seaward dipping high‐velocity static backstops associated with the Siletz and Klamath terranes, situated near the shoreline and further inland, respectively. Regions of reduced crustal velocity are associated with crustal faults. Moreover, there is significant along‐strike depth variation in the subducting slab, which is about 4 km deeper near the thick, dense Siletz terrane and becomes shallower near the predominantly less‐dense Franciscan terrane. This highlights a sudden tectonic and geologic transition at the southern boundary of the Siletz terrane. Our velocity model also indicates slightly increased hydration, though still minimal, in both the oceanic crust and the upper mantle of the subducting plate compared to other parts of the margin.more » « less
-
null (Ed.)Myanmar is surrounded by complex seismotectonic elements and threatened by a high seismic risk. The Central yanmar Basin (CMB) hosts the largest and fastest growing cities of Myanmar. The CMB is bounded by the Indo- Myanmar subduction zone to the west and the Sagaing fault to the east and is a seismically active tectonic block that has experienced large earthquakes (up to magnitude 8.0). A large earthquake in this region would affect Yangon and its surrounding population of around 8 million. Sedimentary basins have a significant contribution to seismic wave propagation, amplification and duration of ground shaking. Thus, to more accurately estimate the seismic hazard, a clear understanding of the detailed basin structures is required. The goal of our study is to map crustal structures, i.e. crustal thickness, crustal blocks, basin shape, size and depth, fault geometry, dipping layers and intra-crustal layers beneath the Yangon region. We will present receiver functions from a dense array of 168 nodal seismometers with the goal of revealing high-resolution seismic images of the basin. Our dense array will improve basin imaging by reducing uncertainties in receiver function interpretations. Developing a better understanding of basin structures will help our understanding of seismic amplification in the basin and thus will help to more accurately estimate the seismic hazard of this region.more » « less
-
Theory suggests the possibility for significant deviations between total pressure (or dynamic pressure) and lithostatic pressure during crustal metamorphism. If such deviations exist, the implications for orogenic reconstruction would be profound. Whether such non-lithostatic pressure conditions during crustal metamorphism are recorded and preserved in the rock record remains unresolved, as direct field evidence for this phenomenon is limited. Here, we investigate the Paleogene Tethyan Himalaya fold-thrust belt in Himachal Pradesh, northwestern India, which is the structurally highest part of the Himalayan orogen and deforms a ~10–15 km thick Neoproterozoic–Cretaceous passive margin stratigraphic section. Field-based kinematic studies demonstrate relatively moderate shortening strain across the Tethyan Himalaya. However, basal Tethyan strata consistently yield elevated pressure-temperature-time (P-T-t) estimates of 7–8 kbar and ~650°C, indicative of deep burial during Himalayan orogeny (ca. 20–45 Ma, 25–30 km depths). These P-T-t conditions can be reconciled by: (1) deep Cenozoic burial along cryptic structures and/or significant flattening of the Tethyan strata; (2) basal Tethyan strata recording metamorphism and deformation related to pre-Himalayan tectonism; or (3) non-lithostatic pressure conditions (i.e., tectonic overpressure). To test these models, we systematically mapped the Tethyan fold-thrust belt along the Pin Valley transect in northwestern India, a classic site for stratigraphic, paleontological, paleoenvironmental, and structural reconstructions. The Pin Valley region provides an opportunity to study a structurally continuous metamorphic field gradient from the near-surface to structural depths between 10–15 km, which should reflect P conditions ≤4 kbar if lithostatic. We integrate a multi-method approach combining detailed geologic mapping with quantitative analytical techniques (e.g., thermometry, finite strain analyses, thermo/geochronology, and thermobarometry) to quantify the magnitude, kinematics, thermal architecture, and timing of regional deformation, metamorphism, and subsequent exhumation. Results show: (1) throw on shortening structures is moderate to low (≤4 km); (2) temperature-depth relationships record a continuous, but regionally elevated, upper-crustal geothermal gradient of ≥40 °C/km, which is inconsistent with deep burial models (≤25 °C/km); (3) minimal flattening of basal Tethyan strata; (4) upper Tethyan strata yield pre-Himalayan low-temperature thermochronology dates, further refuting deep Cenozoic burial; and (5) basal Tethyan P-T-t estimates confirm elevated mid-crustal conditions of ~7 kbar, 630°C at 10–15 km depths during the Cenozoic. Preliminary volume expansion calculations are minimal; therefore, mechanisms involving non-hydrostatic thermodynamics, deviatoric stresses, rock strength contrasts, and tectonic mode switching are being explored.more » « less
-
Abstract As North America collided with Africa to form Pangea during the Alleghanian orogeny, crystalline and sedimentary rocks in the southeastern United States were thrust forelandward along the Appalachian décollement. We examined Ps receiver functions to better constrain the kinematics of this prominent subsurface structure. From Southeastern Suture of the Appalachian Margin Experiment (SESAME) and other EarthScope stations on the Blue Ridge–Piedmont crystalline megathrust, we find large arrivals from a 5–10-km-deep converter. We argue that a strong contrast in dipping anisotropic foliation occurs at the subhorizontal Appalachian décollement, and propose that such a geometry may be typical for décollement structures. Conversion polarity flips can be explained by an east-dipping foliation, but this orientation is at odds with the overlying northeast-trending surface tectonic grain. We suggest that prior to late Alleghanian northwest-directed head-on collision, the Appalachian décollement accommodated early Alleghanian west-vergence, independent of the overlying Blue Ridge–Piedmont structural inheritance. The geophysical expression of dipping anisotropic foliation provides a powerful tool for investigating subsurface kinematics, especially where they are obscured by overlying fabric, to disentangle the tectonic complexities that embody oblique collisional orogens.more » « less
An official website of the United States government
