skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimation of the mean function of functional data via deep neural networks
In this work, we propose a deep neural networks‐based method to perform non‐parametric regression for functional data. The proposed estimators are based on sparsely connected deep neural networks with rectifier linear unit (ReLU) activation function. We provide the convergence rate of the proposed deep neural networks estimator in terms of the empirical norm. Through Monte Carlo simulation studies, we examine the finite sample performance of the proposed method. Finally, the proposed method is applied to analyse positron emission tomography images of patients with Alzheimer's disease obtained from the Alzheimer Disease Neuroimaging Initiative database.  more » « less
Award ID(s):
1736470
PAR ID:
10446369
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
10
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract:The newer technologies such as data mining, machine learning, artificial intelligence and data analytics have revolutionized medical sector in terms of using the existing big data to predict the various patterns emerging from the datasets available inthe healthcare repositories. The predictions based on the existing datasets in the healthcare sector have rendered several benefits such as helping clinicians to make accurate and informed decisions while managing the patients’ health leading to better management of patients’ wellbeing and health-care coordination. The millions of people have been affected by the coronary artery disease (CAD). There are several machine learning including ensemble learning approach and deep neural networks-based algorithms have shown promising outcomes in improving prediction accuracy for early diagnosis of CAD. This paper analyses the deep neural network variant DRN, Rider Optimization Algorithm-Neural network (RideNN) and Deep Neural Network-Fuzzy Neural Network (DNFN) with application of ensemble learning method for improvement in the prediction accuracy of CAD. The experimental outcomes showed the proposed ensemble classifier achieved the highest accuracy compared to the other machine learning models. Keywords:Heart disease prediction, Deep Residual Network (DRN), Ensemble classifiers, coronary artery disease. 
    more » « less
  2. Abstract Early diagnosis of Alzheimer’s disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer’s disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression. We validate both models on an internal held-out cohort from The Alzheimer's Disease Neuroimaging Initiative (ADNI) and on an external independent cohort from The National Alzheimer's Coordinating Center (NACC). The deep-learning model is accurate, achieved an area-under-the-curve (AUC) of 85.12 when distinguishing between cognitive normal subjects and subjects with either MCI or mild Alzheimer’s dementia. In the more challenging task of detecting MCI, it achieves an AUC of 62.45. It is also significantly faster than the volume/thickness model in which the volumes and thickness need to be extracted beforehand. The model can also be used to forecast progression: subjects with mild cognitive impairment misclassified as having mild Alzheimer’s disease dementia by the model were faster to progress to dementia over time. An analysis of the features learned by the proposed model shows that it relies on a wide range of regions associated with Alzheimer's disease. These findings suggest that deep neural networks can automatically learn to identify imaging biomarkers that are predictive of Alzheimer's disease, and leverage them to achieve accurate early detection of the disease. 
    more » « less
  3. This work investigates the electrical impedance tomography problem when only limited boundary measurements are available, which is known to be challenging due to the extreme ill-posedness. Based on the direct sampling method (DSM) introduced in [Y. T. Chow, K. Ito, and J. Zou, Inverse Problems, 30 (2016), 095003], we propose deep direct sampling methods (DDSMs) to locate inhomogeneous inclusions in which two types of deep neural networks (DNNs) are constructed to approximate the index function (functional): fully connected neural networks and convolutional neural networks. The proposed DDSMs are easy to be implemented, capable of incorporating multiple Cauchy data pairs to achieve high-quality reconstruction and highly robust with respect to large noise. Additionally, the implementation of DDSMs adopts offline-online decomposition, which helps to reduce a lot of computational costs and makes DDSMs as efficient as the conventional DSM proposed by Chow, Ito, and Zou. The numerical experiments are presented to demonstrate the efficacy and show the potential benefits of combining DNN with DSM. 
    more » « less
  4. Despite the great success of deep learning, recent works show that large deep neural networks are often highly redundant and can be significantly reduced in size. However, the theoretical question of how much we can prune a neural network given a specified tolerance of accuracy drop is still open. This paper provides one answer to this question by proposing a greedy optimization based pruning method. The proposed method has the guarantee that the discrepancy between the pruned network and the original network decays with exponentially fast rate w.r.t. the size of the pruned network, under weak assumptions that apply for most practical settings. Empirically, our method improves prior arts on pruning various network architectures including ResNet, MobilenetV2/V3 on ImageNet. 
    more » « less
  5. In recent years, the notion of local robustness (or robustness for short) has emerged as a desirable property of deep neural networks. Intuitively, robustness means that small perturbations to an input do not cause the network to perform misclassifications. In this paper, we present a novel algorithm for verifying robustness properties of neural networks. Our method synergistically combines gradient-based optimization methods for counterexample search with abstraction-based proof search to obtain a sound and (δ -)complete decision procedure. Our method also employs a data-driven approach to learn a verification policy that guides abstract interpretation during proof search. We have implemented the proposed approach in a tool called Charon and experimentally evaluated it on hundreds of benchmarks. Our experiments show that the proposed approach significantly outperforms three state-of-the-art tools, namely AI^2, Reluplex, and Reluval. 
    more » « less