Abstract To explore both environmental change and the response of non‐fossilizing phytoplankton across the Cretaceous‐Paleogene (K‐Pg) boundary mass extinction event, we determined changes in organic matter (OM) sources using a range of apolar (n‐alkanes, acyclic isoprenoids, steranes, and hopanes) and polar (BIT index) biomarkers. We analyzed two K‐Pg proximal sections, located in the Mississippi Embayment, Gulf Coastal Plain (USA), covering ∼300 kyrs prior to and ∼3 myrs after the K‐Pg event. The OM abundance and composition changed dramatically across the boundary. The post‐impact ejecta layer and burrowed unit are characterized by an increase in the mass accumulation rate (MAR) of plant and soil biomarkers, including high‐molecular‐weightn‐alkanes and C29steranes as well as the BIT index, related to an erosive period which transported terrestrial OM to the ocean in the aftermath of the impact event. At the same time, MARs of putative aquatic biomarkers decrease (low‐molecular‐weightn‐alkanes, C27steranes and pristane and phytane), which suggests a collapse of the marine phytoplankton community. The increase of terrestrial OM to the ocean, during the first 280 kyrs after the Chicxulub impact event, is a combination of reworked kerogen, soil and some plant material. Crucially, within the latter part of this erosion period, only ∼160 kyrs after the K‐Pg do biomarkers return to distributions similar to those in the upper Cretaceous, although not to pre‐impact MARs. Thus, our results suggest a long‐term interval for the full sedimentary and ecological recovery of the non‐fossilizing phytoplankton community after this event.
more »
« less
The end of the Cretaceous: depositional palaeogeographical reconstruction of the Gulf of Mexico and adjacent areas just prior to the Chicxulub impact
Abstract Until recently, information about the end of the Cretaceous was based upon investigation of global outcrop sections. New subsurface drilling and characterization from well cores and logs in the Gulf of Mexico Basin have greatly illuminated the end Cretaceous event. However, the palaeogeography of the late Maastrichtian just prior to bolide impact is less well understood and is of great importance in terms of modelling the resulting distribution and composition of the Chicxulub impact material, as well as tsunami and seiche wave height. Here, we examine the Maastrichtian strata in the basin, synthesizing lithostratigraphy and chronostratigraphy, tectonic plate reconstructions, global and local sea level history, palaeoclimate and depositional systems. Our new Maastrichtian palaeogeographical reconstruction shows the basin prior to the Chicxulub impact at a time of globally high sea level, with widespread deposition of deepwater chalks and shallow marine carbonates and local siliciclastic shorelines fed by the nascent Cordilleran belt. Stratigraphic correlations of wells and outcrops illustrate the range of palaeoenvironments from coastal plain to deep marine. As much as 610 m (2000 ft) of Maastrichtian and Campanian section is mapped around the basin, reflecting accommodation provided by basin subsidence, salt deflation and palaeophysiography. A large thickness of carbonates accumulated in the basin centre, with steep shoreline to basin gradients particularly in Mexico. At the end of the Cretaceous, carbonate palaeoenvironments probably covered 96% of the Gulf of Mexico Basin, with less than 4% of the area likely occupied by siliciclastic systems, a distribution that evolved from the Early Cretaceous. Our maps thus explain dominance of carbonate breccia and chalks in K–Pg boundary units deposited over the basin sites proximal or distal to the Chicxulub impact crater. This also elucidates the large impedance contrast and high amplitude seismic response of the K–Pg boundary horizon, mappable over vast portions of the basin.
more »
« less
- Award ID(s):
- 2037752
- PAR ID:
- 10565243
- Publisher / Repository:
- Geological Society of London
- Date Published:
- Journal Name:
- Geological Society, London, Special Publications
- Volume:
- 545
- Issue:
- 1
- ISSN:
- 0305-8719
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The Cretaceous-Paleogene (K-Pg) mass extinction is marked globally by elevated concentrations of iridium, emplaced by a hypervelocity impact event 66 million years ago. Here, we report new data from four independent laboratories that reveal a positive iridium anomaly within the peak-ring sequence of the Chicxulub impact structure, in drill core recovered by IODP-ICDP Expedition 364. The highest concentration of ultrafine meteoritic matter occurs in the post-impact sediments that cover the crater peak ring, just below the lowermost Danian pelagic limestone. Within years to decades after the impact event, this part of the Chicxulub impact basin returned to a relatively low-energy depositional environment, recording in unprecedented detail the recovery of life during the succeeding millennia. The iridium layer provides a key temporal horizon precisely linking Chicxulub to K-Pg boundary sections worldwide.more » « less
-
The stable isotopic composition of soil-formed carbonate, and bulk geochemistry of preserved soil matrix, can provide regionally constrained records of hydroclimatic change throughout deep-time. The SK cores, spanning over 10 km of sediment drilled from the Songliao Basin in Northeast China, represent near continuous terrestrial deposition across the late Jurassic to early Paleogene. In this study we analyze SK-1n paleosol core samples spanning late Maastrichtian to early Danian to interpret the regional hydroclimate response to global climate change, concurrent with Deccan Traps volcanism and the Chicxulub impact. Building on numerous paleosol carbonate datasets from the Sifangtai and Mingshui formations, we present ~40 new carbonate clumped isotope measurements at ca. 10 – 20 kyr resolution between 66.3 to 65.5 Ma. We produce a new kernel-smoothed temperature record and estimate the δ18O of soil porewater (δ18Opw), and δ13C of soil CO2 (δ13Cs) from new and previously published datasets. Molecular weathering ratios, derived from bulk geochemistry, are used to reconstruct weathering (CIA-K), clay formation (Al/Si), soil drainage (Ba/Sr), and calculate mean annual precipitation (MAP) via established transfer functions. Preliminary results suggest elevated K-Pg boundary temperatures, averaging ~30 °C, that decline by ~10 °C over the following 500 kyr. Post-impact cooling may contribute to a negative δ18Ocarb excursion (-2.5‰) at ~65.8 Ma. Further, stable subhumid MAP (~1100 mm/yr) across the dataset suggests negligible amount effect influence. Mean δ18Opw (-6.9‰) is largely stable, and does not reflect regional monsoon seasonality. Instead, stable δ18Opw indicates a consistent moisture source, a potential persistent seasonal bias in carbonate formation. Binning all compiled δ18Opw by soil profile depth reveals statistically significant enrichment in the upper 60 cm of soil profiles, and accounts for variability in the δ18Opw (σ = 1.16‰). Soil respiration, modeled from δ13Cs, increases from ca. 700 to 2000 gC/m2/year across the K-Pg boundary, indicating increased productivity despite declining pCO2 and available phosphorus. Future work will expand the temporal range of isotopic measurements (~72 to 65 Ma) and contextualize our latest Cretaceous results within a spatial framework across Asia.more » « less
-
Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coin- cides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we docu- ment a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth sys- tem modeling, indicate that a partial ∼50% reduction in global ma- rine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario recon- ciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which ma- rine life imprints its isotopic signal onto the geological record.more » « less
-
Previous ichnological analysis at the Chicxulub impact crater, Yucatán Peninsula, México (International Ocean Discovery Program [IODP]/International Continental Scientific Drilling Program [ICDP] Site M0077), showed a surprisingly rapid initial tracemaker community recovery after the end-Cretaceous (Cretaceous-Paleogene [K-Pg]) mass extinction event. Here, we found that full recovery was also rapid, with the establishment of a well-developed tiered community within ~700 k.y. Several stages of recovery were observed, with distinct phases of stabilization and diversification, ending in the development of a trace fossil assemblage mainly consisting of abundant Zoophycos, Chondrites, and Planolites, assigned to the Zoophycos ichnofacies. The increase in diversity is associated with higher abundance, larger forms, and a deeper and more complex tiering structure. Such rapid recovery suggests that favorable paleoenvironmental conditions were quickly reestablished within the impact basin, enabling colonization of the substrate. Comparison with the end-Permian extinction reveals similarities during recovery, yet postextinction recovery was significantly faster after the K-Pg event. The rapid recovery has significant implications for the evolution of macrobenthic biota after the K-Pg event. Our results have relevance in understanding how communities recovered after the K-Pg impact and how this event differed from other mass extinction events.more » « less
An official website of the United States government

