skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2012336

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aquatic ecosystems are subjected to many chemical stressors, including nutrients and emerging contaminants like pharmaceuticals. While pharmaceutical concentrations in streams and rivers are often below the thresholds for acute toxicity, they nonetheless disrupt ecology through changes to organisms' physiology, metabolism, and behavior. However, analyzing samples for the wide range of manufactured pharmaceuticals is often prohibitively expensive for many monitoring efforts. As such, the ability to predict pharmaceutical concentrations over space and time using easier‐to‐monitor water quality parameters would expand our understanding of the scope and consequences of pharmaceutical contamination in aquatic ecosystems. We applied random forest models to data from the Baltimore Ecosystem Study to investigate how well routinely monitored water quality parameters could be used to predict concentrations of nutrients and pharmaceuticals. We found that concentrations of nutrients were accurately predicted by these models, but models for predicting concentrations of pharmaceuticals had high error rates and low predictive ability. Differences in our ability to predict concentrations of nutrients as opposed to pharmaceuticals could be due to differences in their sources, chemistries, or behavior in the environment. More concerted efforts to monitor pharmaceutical concentrations over time in aquatic ecosystems may help to resolve environmental drivers of their concentration and improve our ability to predict them. 
    more » « less
  2. Abstract Hydrologic alterations associated with urbanization can weaken connections between riparian zones, streams, and uplands, leading to negative effects on the ability of riparian zones to intercept pollutants carried by surface water runoff and groundwater flow such as nitrate (NO3) and phosphate (PO43−). We analyzed the monthly water table as an indicator of riparian connectivity, along with groundwater NO3and PO43−concentrations, at four riparian sites within and near the Gwynns Falls Watershed in Baltimore, MD, from 1998 to 2018. The sites included one forested reference site (Oregon Ridge), two suburban riparian sites (Glyndon and Gwynnbrook), and one urban riparian site (Cahill) with at least two locations and four monitoring wells, located 5 m from the center of the stream, at each site. Results show an increase in connectivity as indicated by shallower water tables at two of the four sites studied: Glyndon and Cahill. This change in connectivity was associated with decreases in NO3at Glyndon and increases in PO43−at Glyndon, Gwynnbrook, and Cahill. These changes are consistent with previous studies showing that shallower water table depths increase anaerobic conditions, which increase NO3consumption by denitrification and decrease PO43−retention. The absence of change in the forested reference site, where climate would be expected to be the key driver, suggests that other drivers, including best management practices and stream restoration projects, could be affecting riparian water tables at the two suburban sites and the one urban site. Further research into the mechanisms behind these changes and site‐specific dynamics is needed. 
    more » « less
  3. Whalen, Joann (Ed.)
    Abstract Residential landscapes are essential to the sustainability of large areas of the United States. However, spatial and temporal variation across multiple domains complicates developing policies to balance these systems’ environmental, economic, and equity dimensions. We conducted multidisciplinary studies in the Baltimore, MD, USA, metropolitan area to identify locations (hotspots) or times (hot moments) with a disproportionate influence on nitrogen export, a widespread environmental concern. Results showed high variation in the inherent vulnerability/sensitivity of individual parcels to cause environmental damage and in the knowledge and practices of individual managers. To the extent that hotspots are the result of management choices by homeowners, there are straightforward approaches to improve outcomes, e.g. fertilizer restrictions and incentives to reduce fertilizer use. If, however, hotspots arise from the configuration and inherent characteristics of parcels and neighborhoods, efforts to improve outcomes may involve more intensive and complex interventions, such as conversion to alternative ecosystem types. 
    more » « less
  4. Abstract Groundwater nitrate‐N isotopes (δ15N‐) have been used to infer the effects of natural and anthropogenic change on N cycle processes in the environment. Here we report unexpected changes in groundwater δ15N‐ for riparian zones affected by relict milldams and road salt salinization. Contrary to natural, undammed conditions, groundwater δ15N‐ values declined from the upland edge through the riparian zone and were lowest near the stream. Groundwater δ15N‐ values increased for low electron donor (dissolved organic carbon) to acceptor ratios but decreased beyond a change point in ratios. Groundwater δ15N‐ values were particularly low for the riparian milldam site subjected to road‐salt salinization. We attributed these N isotopic trends to suppression of denitrification, occurrence of dissimilatory nitrate reduction to ammonium (DNRA), and/or effects of road salt salinization. Groundwater δ15N‐ can provide valuable insights into process mechanisms and can serve as “imprints” of anthropogenic activities and legacies. 
    more » « less
  5. Abstract The compounding effects of anthropogenic legacies for environmental pollution are significant, but not well understood. Here, we show that centennial‐scale legacies of milldams and decadal‐scale legacies of road salt salinization interact in unexpected ways to produce hot spots of nitrogen (N) in riparian zones. Riparian groundwater and stream water concentrations upstream of two mid‐Atlantic (Pennsylvania and Delaware) milldams, 2.4 and 4 m tall, were sampled over a 2 year period. Clay and silt‐rich legacy sediments with low hydraulic conductivity, stagnant and poorly mixed hydrologic conditions, and persistent hypoxia in riparian sediments upstream of milldams produced a unique biogeochemical gradient with nitrate removal via denitrification at the upland riparian edge and ammonium‐N accumulation in near‐stream sediments and groundwaters. Riparian groundwater ammonium‐N concentrations upstream of the milldams ranged from 0.006 to 30.6 mgN L−1while soil‐bound values were 0.11–456 mg kg−1. We attribute the elevated ammonium concentrations to ammonification with suppression of nitrification and/or dissimilatory nitrate reduction to ammonium (DNRA). Sodium inputs to riparian groundwater (25–1,504 mg L−1) from road salts may further enhance DNRA and ammonium production and displace sorbed soil ammonium‐N into groundwaters. This study suggests that legacies of milldams and road salts may undercut the N buffering capacity of riparian zones and need to be considered in riparian buffer assessments, watershed management plans, and dam removal decisions. Given the widespread existence of dams and other barriers and the ubiquitous use of road salt, the potential for this synergistic N pollution is significant. 
    more » « less
  6. Abstract Milldams and their legacies have significantly influenced fluvial processes and geomorphology. However, less is known about their effects on riparian zone hydrology, biogeochemistry, and water quality. Here, we discuss the potential effects of existing and breached milldams on riparian nitrogen (N) processing through multiple competing hypotheses and observations from complementary studies. Competing hypotheses characterize riparian zone processes that remove (sink) or release (source) N. Elevated groundwater levels and reducing soil conditions upstream of milldams suggest that riparian zones above dams could be hotspots for N removal via denitrification and plant N uptake. On the other hand, dam removals and subsequent drops in stream and riparian groundwater levels result in drained, oxic soils which could increase soil nitrification and decrease riparian plant uptake due to groundwater bypassing the root zone. Whether dam removals would result in a net increase or decrease of N in riparian groundwaters is unknown and needs to be investigated. While nitrification, denitrification, and plant N uptake have typically received the most attention in riparian studies, other N cycle processes such as dissimilatory nitrate reduction to ammonium (DNRA) need to be considered. We also propose a novel concept of riparian discontinuum, which highlights the hydrologic and biogeochemical discontinuities introduced in riparian zones by anthropogenic structures such as milldams. Understanding and quantifying how milldams and similar structures influence the net source or sink behavior of riparian zones is urgently needed for guiding watershed management practices and for informed decision making with regard to dam removals. 
    more » « less
  7. Abstract Dam removals are on the increase across the US with Pennsylvania currently leading the nation. While most dam removals are driven by aquatic habitat and public safety considerations, we know little about how dam removals impact water quality and riparian zone processes. Dam removals decrease the stream base level, which results in dewatering of the riparian zone. We hypothesized that this dewatering of the riparian zone would increase nitrification and decrease denitrification, and thus result in nitrogen (N) leakage from riparian zones. This hypothesis was tested for a 1.5 m high milldam removal. Stream, soil water, and groundwater N concentrations were monitored over 2 years. Soil N concentrations and process rates andδ15N values were also determined. Denitrification rates and soilδ15N values in riparian sediments decreased supporting our hypothesis but no significant changes in nitrification were observed. While surficial soil water nitrate‐N concentrations were high (median 4.5 mg N L−1), riparian groundwater nitrate‐N values were low (median 0.09 mg N L−1), indicating that nitrate‐N leakage was minimal. We attribute the low groundwater nitrate‐N to denitrification losses at the lower, more dynamic, groundwater interface and/or dissimilatory nitrate reduction to ammonium (DNRA). Stream water nitrate‐N concentrations were high (median 7.6 mg N L−1) and contrary to our dam‐removal hypothesis displayed a watershed‐wide decline that was attributed to regional hydrologic changes. This study provided important first insights on how dam removals could affect N cycle processes in riparian zones and its implications for water quality and watershed management. 
    more » « less
  8. We appear to be at a shining moment for interactions between soils and society. Popular interest in soils has increased along with interests in urban gardening, carbon sequestration, recognition of the vast biodiversity in soils, and the realisation that soils are a finite resource whose degradation has serious consequences. This increase in interest creates both opportunities and challenges for soil science. While there is great potential for increasing the diversity of people involved with soil science, key scientific and communication challenges need to be addressed for interactions between soils and society to be useful and productive. Here, I present case study issues on the mechanisms and limitations of carbon sequestration in soils and the need to restore and/or create new soils for specific uses, including urban agriculture and green infrastructure, to illustrate the opportunities and challenges associated with new societal interest in soil science. Addressing these issues requires advances in both basic and applied science, new participatory approaches to the design, execution, and interpretation of research, collaboration with multiple disciplines, including the social sciences, and improvements in the two‐way flow of information between science and society. Careful attention to these issues will attract new people to soil science, advance awareness of the importance of and threats to soils across the globe, and produce improvements in the quality of life for diverse human populations. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  9. Abstract. Late Cretaceous clays exposed at sites located on the north shore of Long Island, New York, USA, were sampled to explore questions about how contemporary factors and processes interact with ancient geological materials that are often assumed to not be biologically active. Chemically and biologically catalyzed weathering processes have produced multi-colored clays belonging to the kaolin group with inclusions of hematite, limonite, and pyrite nodules. We sampled exposed clays at three sites to address three questions: (1) do these exposed clays support significant amounts of microbial biomass and activity, i.e., are they alive? (2) Do these clays support significant nitrogen (N) cycle activity? (3) Are these clays a potential non-anthropogenic source of reactive N in the contemporary landscape? Samples were analyzed for total carbon (C) and N content, microbial biomass C and N content, microbial respiration, organic matter (OM) content, potential net N mineralization and nitrification, soil nitrate (NO3-) and ammonium (NH4+) content, and denitrification potential. Results strongly support the idea that ancient geologic materials play a role in contemporary N and C cycling in the Critical Zone. Respiration (average 4.098 µg C g−1d−1) was detectable in all samples and was strongly correlated to OM, indicating a living microbial community on the clays. There was evidence of an active N cycle. Higher levels of denitrification potential (average 1.376 µg N g−1 d−1) compared to both potential net nitrification (average 0.061 µg N g−1 d−1) and potential net N mineralization (average 0.144 µg N g−1 d−1) indicate that these clays act more as a sink rather than as a source of reactive N in the landscape. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026