skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design Principles for Background Knowledge to Enhance Learning in Citizen Science
Citizen scientists make valuable contributions to science but need to learn about the data they are working with to be able to perform more advanced tasks. We present a set of design principles for identifying the kinds of background knowledge that are important to support learning at different stages of engagement, drawn from a study of how free/libre open source software developers are guided to create and use documents. Specifically, we suggest that newcomers require help understanding the purpose, form and content of the documents they engage with, while more advanced developers add understanding of information provenance and the boundaries, relevant participants and work processes. We apply those principles in two separate but related studies. In study 1, we analyze the background knowledge presented to volunteers in the Gravity Spy citizen-science project, mapping the resources to the framework and identifying kinds of knowledge that were not initially provided. In study 2, we use the principles proactively to develop design suggestions for Gravity Spy 2.0, which will involve volunteers in analyzing more diverse sources of data. This new project extends the application of the principles by seeking to use them to support understanding of the relationships between documents, not just the documents individually. We conclude by discussing future work, including a planned evaluation of Gravity Spy 2.0 that will provide a further test of the design principles.  more » « less
Award ID(s):
2106865 1547880
PAR ID:
10446553
Author(s) / Creator(s):
; ; ;
Editor(s):
Sserwanga, I.
Date Published:
Journal Name:
Information for a Better World: Normality, Virtuality, Physicality, Inclusivity. iConference 2023. Lecture Notes in Computer Science, vol 13972
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches. 
    more » « less
  2. We explore patterns of interaction with different learning resources (e.g., forums) to predict learning outcomes in an online citizen science project called Gravity Spy. To explore how volunteers engage with and benefit from these resources, we categorize them based on Sørensen's three forms of presence in learning environments: authority-subject, agent-centered, and communal presence. Methodologically, we apply sequence analysis to traces of volunteer interactions with the project to identify engagement patterns with these resources that predict learning. Our interpretation of these patterns is augmented by insights gleaned from interviews with volunteers about their work and use of learning resources. We find that early in the project, volunteers have only a simple task to learn, and completing that task is most predictive of their learning. At more advanced levels, when tasks become more complex, discussions with other volunteers become increasingly important, and interaction patterns become more varied. Viewing learning as a series of routines allows us to articulate precisely how and in what context learning occurs. We conclude by discussing the implications of these findings for designing citizen science projects that promote learning. 
    more » « less
  3. Gravity Spy is a citizen science project that draws on the contributions of both humans and machines to achieve its scientific goals. The system supports the Laser Interferometer Gravitational Observatory (LIGO) by classifying “glitches” that interfere with observations. The system makes three advances on the current state of the art: explicit training for new volunteers, synergy between machine and human classification and support for discovery of new classes of glitch. As well, it provides a platform for human-centred computing research on motivation, learning and collaboration. The system has been launched and is currently in operation. 
    more » « less
  4. We explore the bi-directional relationship between human and machine learning in citizen science. Theoretically, the study draws on the zone of proximal development (ZPD) concept, which allows us to describe AI augmentation of human learning, human augmentation of machine learning, and how tasks can be designed to facilitate co-learning. The study takes a design-science approach to explore the design, deployment, and evaluations of the Gravity Spy citizen science project. The findings highlight the challenges and opportunities of co-learning, where both humans and machines contribute to each other’s learning and capabilities. The study takes its point of departure in the literature on co-learning and develops a framework for designing projects where humans and machines mutually enhance each other’s learning. The research contributes to the existing literature by developing a dynamic approach to human-AI augmentation, by emphasizing that the ZPD supports ongoing learning for volunteers and keeps machine learning aligned with evolving data. The approach offers potential benefits for project scalability, participant engagement, and automation considerations while acknowledging the importance of tutorials, community access, and expert involvement in supporting learning. 
    more » « less
  5. Although participation of citizen scientists is critical for a success of citizen science projects (a distinctive form of crowdsourcing), little attention has been paid to what types of messages can effectively recruit citizen scientists. Derived from previous studies on citizen scientists’ motivations, we created and sent participants one of four recruiting messages for a new project, Gravity Spy, appealing to different motivations (i.e., learning about science, social proof, contribution to science, and altruism). Counter to earlier studies on motivation, our results showed that messages appealing to learning, contribution and social proof were more effective than a message appealing to altruism. We discuss the inconsistency between the present and prior study results and plans for future work. 
    more » « less