Citizen science projects face a dilemma in relying on contributions from volunteers to achieve their scientific goals: providing volunteers with explicit training might increase the quality of contributions, but at the cost of losing the work done by newcomers during the training period, which for many is the only work they will contribute to the project. Based on research in cognitive science on how humans learn to classify images, we have designed an approach to use machine learning to guide the presentation of tasks to newcomers that help them more quickly learn how to do the image classification task while still contributing to the work of the project. A Bayesian model for tracking volunteer learning is presented.
more »
« less
This content will become publicly available on October 18, 2026
Leveling Up or Dropping Out: Searching for Learning Routines in Crowdsourced Environments
We explore patterns of interaction with different learning resources (e.g., forums) to predict learning outcomes in an online citizen science project called Gravity Spy. To explore how volunteers engage with and benefit from these resources, we categorize them based on Sørensen's three forms of presence in learning environments: authority-subject, agent-centered, and communal presence. Methodologically, we apply sequence analysis to traces of volunteer interactions with the project to identify engagement patterns with these resources that predict learning. Our interpretation of these patterns is augmented by insights gleaned from interviews with volunteers about their work and use of learning resources. We find that early in the project, volunteers have only a simple task to learn, and completing that task is most predictive of their learning. At more advanced levels, when tasks become more complex, discussions with other volunteers become increasingly important, and interaction patterns become more varied. Viewing learning as a series of routines allows us to articulate precisely how and in what context learning occurs. We conclude by discussing the implications of these findings for designing citizen science projects that promote learning.
more »
« less
- Award ID(s):
- 2106882
- PAR ID:
- 10652381
- Publisher / Repository:
- Association for Computing Machinery
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we describe the results of an online field experiment examining the impacts of messaging about task novelty on the volume of volunteers’ contributions to an online citizen science project. Encouraging volunteers to provide a little more content as they work is an attractive strategy to increase the community’s output. Prior research found that an important motivation for participation in online citizen science is the wonder of being the first person to observe a particular image. To appeal to this motivation, a pop-up message was added to an online citizen science project that alerted volunteers when they were the first to annotate a particular image. Our analysis reveals that new volunteers who saw these messages increased the volume of annotations they contributed. The results of our study suggest an additional strategy to increase the amount of work volunteers contribute to online communities and citizen science projects specifically.more » « less
-
Abstract The bulk of research on citizen science participants is project centric, based on an assumption that volunteers experience a single project. Contrary to this assumption, survey responses (n = 3894) and digital trace data (n = 3649) from volunteers, who collectively engaged in 1126 unique projects, revealed that multiproject participation was the norm. Only 23% of volunteers were singletons (who participated in only one project). The remaining multiproject participants were split evenly between discipline specialists (39%) and discipline spanners (38% joined projects with different disciplinary topics) and unevenly between mode specialists (52%) and mode spanners (25% participated in online and offline projects). Public engagement was narrow: The multiproject participants were eight times more likely to be White and five times more likely to hold advanced degrees than the general population. We propose a volunteer-centric framework that explores how the dynamic accumulation of experiences in a project ecosystem can support broad learning objectives and inclusive citizen science.more » « less
-
Abstract The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches.more » « less
-
Sserwanga, I. (Ed.)Citizen scientists make valuable contributions to science but need to learn about the data they are working with to be able to perform more advanced tasks. We present a set of design principles for identifying the kinds of background knowledge that are important to support learning at different stages of engagement, drawn from a study of how free/libre open source software developers are guided to create and use documents. Specifically, we suggest that newcomers require help understanding the purpose, form and content of the documents they engage with, while more advanced developers add understanding of information provenance and the boundaries, relevant participants and work processes. We apply those principles in two separate but related studies. In study 1, we analyze the background knowledge presented to volunteers in the Gravity Spy citizen-science project, mapping the resources to the framework and identifying kinds of knowledge that were not initially provided. In study 2, we use the principles proactively to develop design suggestions for Gravity Spy 2.0, which will involve volunteers in analyzing more diverse sources of data. This new project extends the application of the principles by seeking to use them to support understanding of the relationships between documents, not just the documents individually. We conclude by discussing future work, including a planned evaluation of Gravity Spy 2.0 that will provide a further test of the design principles.more » « less
An official website of the United States government
