skip to main content


Title: Professional Learning to Promote Three-Dimensional Teaching Using Computational Modeling in Remote Classroom Contexts
This study explores how to support teachers in developing and implementing effective pedagogical strategies to promote students in making sense of phenomena through computational modeling in remote contexts. Qualitative analyses of eight teachers’ interviews were conducted to characterize their pedagogical strategies to achieve three-dimensional learning. Findings indicate that typical teacher strategies include the teacher and students co-constructing a model and using whole class or group discussions to support students’ modeling practices.  more » « less
Award ID(s):
1842035 2033922
NSF-PAR ID:
10446554
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Chinn, C.; Tan, E.; Chan, C.; Kali, Y.
Date Published:
Journal Name:
Proceedings of the 16th International Conference of the Learning Sciences - ICLS 2022
ISSN:
1573-4552
Page Range / eLocation ID:
1878 - 1879
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the critical role of teachers in the educational process, few advanced learning technologies have been developed to support teacher-instruction or professional development. This lack of support is particularly acute for middle school math teachers, where only 37% felt well prepared to scaffold instruction to address the needs of diverse students in a national sample. To address this gap, the Advancing Middle School Teachers’ Understanding of Proportional Reasoning project is researching techniques to apply pedagogical virtual agents and dialog-based tutoring to enhance teachers' content knowledge and pedagogical content knowledge. This paper describes the design of a conversational, agent-based intelligent tutoring system to support teachers' professional development. Pedagogical strategies are presented that leverage a virtual human facilitator to tutor pedagogical content knowledge (how to teach proportions to students), as opposed to content knowledge (understanding proportions). The roles for different virtual facilitator capabilities are presented, including embedding actions into virtual agent dialog, open-response versus choice-based tutoring, ungraded pop-up sub-activities (e.g. whiteboard, calculator, note-taking). Usability feedback for a small cohort of instructors pursuing graduate studies was collected. In this feedback, teachers rated the system ease of use and perceived usefulness moderately well, but also reported confusion about what to expect from the system in terms of flow between lessons and support by the facilitator. 
    more » « less
  2. Inclusive design is important in today's software industry, but there is little research about how to teach it. In collaboration with 9 teacher-researchers across 8 U.S. universities and more than 400 computer and information science students, we embarked upon an Action Research investigation to gather insights into the pedagogical content knowledge (PCK) that teachers need to teach a particular inclusive design method called GenderMag. Analysis of the teachers' observations and experiences, the materials they used, direct observations of students' behaviors, and multiple data on the students' own reflections on their learning revealed 11 components of inclusive design PCK. These include strategies for anticipating and addressing resistance to the topic of inclusion, strategies for modeling and scaffolding perspective taking, and strategies for tailoring instruction to students' prior beliefs and biases. 
    more » « less
  3. Researchers have typically identified and characterized teachers’ knowledge bases ( e.g. , pedagogical content knowledge and subject matter knowledge) in an effort to improve enacted instructional strategies. As shown by the Refined Consensus Model (RCM), understanding teacher learning, beliefs, and practices is predicated on the interconnections of such knowledge bases. However, lesson planning (defined as the transformation of subject matter knowledge to enacted pedagogical content knowledge) remains underexplored despite its central position in the RCM. We aim to address this gap by developing a conceptual framework known as Pedagogical Chemistry Sensemaking (PedChemSense). PedChemSense theoretically expands upon the RCM that generates actionable guidelines to support chemsistry teachers’ lesson planning. We incorporate the constructs of sensemaking, Johnstone's triangle, and the models for perspective to provide a lesson-planning mechanism that is specific, accessible, and practical, respectively. Lesson examples from our own professional development contexts, the VisChem Institute, demonstrate the efficacy of PedChemSense. By leveraging teachers’ sensemaking of the limitations and utility of models, PedChemSense facilitates teachers’ designing for opportunities to advance their students’ chemistry conceptual understanding. Implications and recommendations for chemistry instruction and research at secondary and undergraduate levels are discussed. 
    more » « less
  4. Blikstein, P. ; Brennan, K ; Kiziko, R. ; van Aalst, J. (Ed.)
    Though the medium of computational modeling presents unique opportunities and challenges for science learning, little research examines how teachers can effectively support students in this work. To address this gap, we investigate how an experienced 6th grade teacher guides her students through programming computational, agent-based models of diffusion. Using interaction analysis of whole-class videos, we define a construct we call ontological alignment in which the teacher facilitates discourse to surface, highlight, connect and seek supporting or contradictory evidence for student ideas in ways that align with the level of analysis available in the modeling tool. We identify two practices reflecting this construct; the teacher 1. primes students to orient to interactions between particles and 2. strategically selects evidence to help discern between student theories. We discuss the pedagogical value of ontological alignment and suggest the identified practices as exemplary for supporting students’ learning through computational modeling. 
    more » « less
  5. In this proposal, we will share some initial findings about how teacher and student engagement in cogenerative dialogues influenced the development of the Culturally Relevant Pedagogical Guidelines for Computational Thinking and Computer Science (CRPG-CSCT). The CRPG-CSCT’s purpose is to provide computer science teachers with tools to enhance their instruction by accurately reflecting students’ diverse cultural resources in the classroom. Additionally, the CRPG-CSCT will provide guidance to non-computer science teachers on how to facilitate the integration of computational thinking skills to a broad spectrum of classes in the arts, humanities, sciences, social sciences, and mathematics. Our initial findings shared here are part of a larger NSF-funded research project (Award No. 2122367) which aims to better understand the barriers to entry and challenges for success faced by underrepresented secondary school students in computer science, through direct engagement with the students themselves. Throughout the 2022-23 academic year, the researchers have been working with a small team of secondary school teachers, students, and instructional designers, as well as university faculty in computer science, secondary education, and sociology to develop the CRPG-CSCT. The CRPG-CSCT is rooted in the tenets of culturally relevant pedagogy (Ladson-Billings, 1995) and borrows from Muhammad’s (2020) work in Cultivating Genius: An Equity Framework for Culturally and Historically Responsive Literacy. The CRPG-CCT is being developed over six day-long workshops held throughout the academic year. At the time of this submission, five of the six workshops had been completed. Each workshop utilized cogenerative dialogues (cogens) as the primary tool for organizing and sustaining participants’ engagement. Through cogens, participants more deeply learn about students’ cultural capital and the value of utilizing that capital within the classroom (Roth, Lawless, & Tobin, 2000). The success of cogens relies on following specific protocols (Emdin, 2016), such as listening attentively, ensuring there are equal opportunities for all participants to share, and affirming the experiences of other participants. The goal of a cogen is to reach a collective decision, based on the dialogue, that will positively impact students by explicitly addressing barriers to their engagement in the classroom. During each workshop, one member of the research team and one undergraduate research assistant observed the interactions among cogen participants and documented these in the form of ethnographic field notes. Another undergraduate research assistant took detailed notes during the workshop to record the content of small and large group discussions, presentations, and questions/responses throughout the workshops. A grounded theory approach was used to analyze the field notes. Additionally, at the conclusion of each workshop, participants completed a Cogen Feedback Survey (CFS) to gather additional information. The CFS were analyzed through open thematic coding, memos, and code frequencies. Our preliminary results demonstrate high levels of engagement from teacher and student participants during the workshops. Students identified that the cogen structure allowed them to participate comfortably, openly, and honestly. Further, students described feeling valued and heard. Students’ ideas and experiences were frequently affirmed, which served as an important step toward dismantling traditional teacher-student boundaries that might otherwise prevent them from sharing freely. Another result from the use of cogens was the shared experience of participants comprehending views from the other group’s perspective in the classroom. Students appreciated the opportunity to learn from teachers about their struggles in keeping students engaged. Teachers appreciated the opportunity to better understand students’ schooling experiences and how these may affirm or deny aspects of their identity. Finally, all participants shared meaningful suggestions and strategies for future workshops and for the collective betterment of the group. Initial findings shared here are important for several reasons. First, our findings suggest that cogens are an effective approach for fostering participants’ commitment to creating the conditions for students’ success in the classroom. Within the context of the workshops, cogens provided teachers, students, and faculty with opportunities to engage in authentic conversations for addressing the recruitment and retention problems in computer science for underrepresented students. These conversations often resulted in the development of tangible pedagogical approaches, examples, metaphors, and other strategies to directly address the recruitment and retention of underrepresented students in computer science. Finally, while we are still developing the CRPG-CSCT, cogens provided us with the opportunity to ensure the voices of teachers and students are well represented in and central to the document. 
    more » « less