skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constraining the spatial curvature with cosmic expansion history in a cosmological model with a non-standard sound horizon
Abstract Spatial curvature is one of the most fundamental parameters in our current concordance flat ΛCDM model of the Universe. The goal of this work is to investigate how the constraint on the spatial curvature is affected by an assumption on the sound horizon scale. The sound horizon is an essential quantity to use the standard ruler from the Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAOs). As an example, we study the curvature constraint in an axion-like Early Dark Energy (EDE) model in light of recent cosmological datasets from Planck, the South Pole Telescope (SPT), and the Atacama Cosmology Telescope (ACT), as well as BAO data compiled in Sloan Digital Sky Survey Data Release 16. We find that, independent of the CMB datasets, the EDE model parameters are constrained only by the CMB power spectra as precisely and consistently as the flat case in previous work, even with the spatial curvature. We also demonstrate that combining CMB with BAO is extremely powerful to constrain the curvature parameter even with a reduction of the sound-horizon scale in an EDE model, resulting in Ω K = -0.0058± 0.0031 in the case of ACT+BAO after marginalizing over the parameters of the EDE model. This constraint is as competitive as the Planck+BAO result in a ΛCDM model, Ω K = -0.0001± 0.0018.  more » « less
Award ID(s):
2219212
PAR ID:
10446596
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2023
Issue:
07
ISSN:
1475-7516
Page Range / eLocation ID:
046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use the emulation framework CosmoPower to construct and publicly release neural network emulators of cosmological observables, including the cosmic microwave background (CMB) temperature and polarization power spectra, matter power spectrum, distance-redshift relation, baryon acoustic oscillation (BAO) and redshift-space distortion (RSD) observables, and derived parameters. We train our emulators on Einstein–Boltzmann calculations obtained with high-precision numerical convergence settings, for a wide range of cosmological models including ΛCDM, wCDM, ΛCDM + Neff, and ΛCDM + Σmν. Our CMB emulators are accurate to better than 0.5 per cent out to ℓ = 104, which is sufficient for Stage-IV data analysis, and our P(k) emulators reach the same accuracy level out to $$k=50 \, \, \mathrm{Mpc}^{-1}$$, which is sufficient for Stage-III data analysis. We release the emulators via an online repository (CosmoPower Organisation), which will be continually updated with additional extended cosmological models. Our emulators accelerate cosmological data analysis by orders of magnitude, enabling cosmological parameter extraction analyses, using current survey data, to be performed on a laptop. We validate our emulators by comparing them to class and camb and by reproducing cosmological parameter constraints derived from Planck TT, TE, EE, and CMB lensing data, as well as from the Atacama Cosmology Telescope Data Release 4 CMB data, Dark Energy Survey Year-1 galaxy lensing and clustering data, and Baryon Oscillation Spectroscopic Survey Data Release 12 BAO and RSD data. 
    more » « less
  2. Abstract We present a measurement of the Hubble constant (H0) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat ΛCDM cosmology, we find $$H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$$, a $$2.4{{\ \rm per\ cent}}$$ precision measurement, in agreement with local measurements of H0 from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H0 in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H0 inference to cosmological model assumptions. For six different cosmological models, our combined inference on H0 ranges from ∼73–78 km s−1 Mpc−1, which is consistent with the local distance ladder constraints. 
    more » « less
  3. Abstract The Universe is neither homogeneous nor isotropic, but it is close enough that we can reasonably approximate it as such on suitably large scales.The inflationary-Λ-Cold Dark Matter (ΛCDM) concordance cosmology builds on these assumptions to describe the origin and evolution of fluctuations. With standard assumptions about stress-energy sources, this system is specified by just seven phenomenological parameters,whose precise relations to underlying fundamental theories are complicated and may depend on details of those fields.Nevertheless, it is common practice to set the parameter that characterizes the spatial curvature, ΩK, exactly to zero.This parameter-fixed ΛCDM is awarded distinguished status as separate model, “flat ΛCDM.”Ipso factothis places the onus on proponents of “curved ΛCDM” to present sufficient evidence that ΩK≠ 0, and is needed as a parameter.While certain inflationary model Lagrangians, with certain values of their parameters, and certain initial conditions, will lead to a present-day universe well-described as containing zero curvature, this does not justify distinguishing that subset of Lagrangians, parameters and initial conditions into a separate model.Absent any theoretical arguments, we cannot use observations that suggest small ΩKto enforce ΩK= 0.Our track record in picking inflationary models and their parametersa priorimakes such a choice dubious, andconcerns about tensions in cosmological parameters and large-angle cosmic-microwave-background anomalies strengthens arguments against this choice.We argue that ΩKmust not be set to zero, and that ΛCDM remains a phenomenological model with at least 7 parameters. 
    more » « less
  4. We measured the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We used two samples of source galaxies, selected with photometric redshifts, (0.1 <  z B  < 1.2) and (1.2 <  z B  < 2), which produce a combined detection significance of the CMB lensing and weak galaxy lensing cross-spectrum of 7.7 σ . With the lower redshift galaxy sample, for which the cross-correlation was detected at a significance of 5.3 σ , we present joint cosmological constraints on the matter density parameter, Ω m , and the matter fluctuation amplitude parameter, σ 8 , marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration as well as the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat ΛCDM cosmological models from both Planck and KiDS-1000. We demonstrate the capacity of CMB weak lensing cross-correlations to set constraints on either the redshift or shear calibration by analysing a previously unused high-redshift KiDS galaxy sample (1.2 <  z B  < 2), with the cross-correlation detected at a significance of 7 σ . This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys. 
    more » « less
  5. Abstract We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0 CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s −1 Mpc −1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = − 0.978 − 0.031 + 0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = − 0.1 − 2.0 + 0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s −1 Mpc −1 when including SH0ES Cepheid distances, and w a = − 0.65 − 0.32 + 0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model. 
    more » « less