skip to main content


Title: A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine‐Free” SEI
Abstract Realization of practical sodium metal batteries (SMBs) is hindered due to lack of compatible electrolyte components, dendrite propagation, and poor understanding of anodic interphasial chemistries. Chemically robust liquid electrolytes that facilitate both favorable sodium metal deposition and a stable solid‐electrolyte interphase (SEI) are ideal to enable sodium metal and anode‐free cells. Herein we present advanced characterization of a novel fluorine‐free electrolyte utilizing the [HCB 11 H 11 ] 1− anion. Symmetrical Na cells operated with this electrolyte exhibit a remarkably low overpotential of 0.032 V at a current density of 2.0 mA cm −2 and a high coulombic efficiency of 99.5 % in half‐cell configurations. Surface characterization of electrodes post‐operation reveals the absence of dendritic sodium nucleation and a surprisingly stable fluorine‐free SEI. Furthermore, weak ion‐pairing is identified as key towards the successful development of fluorine‐free sodium electrolytes.  more » « less
Award ID(s):
2004497
NSF-PAR ID:
10446645
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
51
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solid polymer electrolytes based on plastic crystals are promising for solid‐state sodium metal (Na0) batteries, yet their practicality has been hindered by the notorious Na0‐electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na0batteries is associated with the formation of a thick and non‐uniform solid electrolyte interphase (SEI) and whiskery Na0nucleation/growth. Furthermore, we design a new additive‐embedded plasticized polymer electrolyte to manipulate the Na0deposition and SEI formulation. For the first time, we demonstrate that introducing fluoroethylene carbonate (FEC) additive into the succinonitrile‐plasticized polymer electrolyte can effectively protect Na0against interfacial corrosion by facilitating the growth of dome‐like Na0with thin, amorphous, and fluorine‐rich SEIs, thus enabling significantly improved performances of Na//Na symmetric cells (1,800 h at 0.5 mA cm−2) and Na//Na3V2(PO4)3full cells (93.0 % capacity retention after 1,200 cycles at 1 C rate in coin cells and 93.1 % capacity retention after 250 cycles at C/3 in pouch cells at room temperature). Our work provides valuable insights into the interfacial failure of plasticized polymer electrolytes and offers a promising solution to resolving the interfacial instability issue.

     
    more » « less
  2. Abstract

    Solid polymer electrolytes based on plastic crystals are promising for solid‐state sodium metal (Na0) batteries, yet their practicality has been hindered by the notorious Na0‐electrolyte interface instability issue, the underlying cause of which remains poorly understood. Here, by leveraging a model plasticized polymer electrolyte based on conventional succinonitrile plastic crystals, we uncover its failure origin in Na0batteries is associated with the formation of a thick and non‐uniform solid electrolyte interphase (SEI) and whiskery Na0nucleation/growth. Furthermore, we design a new additive‐embedded plasticized polymer electrolyte to manipulate the Na0deposition and SEI formulation. For the first time, we demonstrate that introducing fluoroethylene carbonate (FEC) additive into the succinonitrile‐plasticized polymer electrolyte can effectively protect Na0against interfacial corrosion by facilitating the growth of dome‐like Na0with thin, amorphous, and fluorine‐rich SEIs, thus enabling significantly improved performances of Na//Na symmetric cells (1,800 h at 0.5 mA cm−2) and Na//Na3V2(PO4)3full cells (93.0 % capacity retention after 1,200 cycles at 1 C rate in coin cells and 93.1 % capacity retention after 250 cycles at C/3 in pouch cells at room temperature). Our work provides valuable insights into the interfacial failure of plasticized polymer electrolytes and offers a promising solution to resolving the interfacial instability issue.

     
    more » « less
  3. Abstract

    Despite the high specific capacity and low redox potential of alkali metals, their practical application as anodes is still limited by the inherent dendrite‐growth problem. The fusible sodium–potassium (Na–K) liquid metal alloy is an alternative that detours this drawback, but the fundamental understanding of charge transport in this binary electroactive alloy anode remains elusive. Here, comprehensive characterization, accompanied with density function theory (DFT) calculations, jointly expound the Na–K anode‐based battery working mechanism. With the organic cathode sodium rhodizonate dibasic (SR) that has negligible selectivity toward cations, the charge carrier is screened by electrolytes due to the selective ionic pathways in the solid electrolyte interphase (SEI). Stable cycling for this Na–K/SR battery is achieved with capacity retention per cycle to be 99.88% as a sodium‐ion battery (SIB) and 99.70% as a potassium‐ion battery (PIB) for over 100 cycles. Benefitting from the flexibility of the liquid metal and the specially designed carbon nanofiber (CNF)/SR layer‐by‐layer cathode, a flexible dendrite‐free alkali‐ion battery is achieved with an ultrahigh areal capacity of 2.1 mAh cm−2. Computation‐guided materials selection, characterization‐supported mechanistic understanding, and self‐validating battery performance collectively promise the prospect of a high‐performance, dendrite‐free, and versatile organic‐based liquid metal battery.

     
    more » « less
  4. Abstract

    Repeated cold rolling and folding is employed to fabricate a metallurgical composite of sodium–antimony–telluride Na2(Sb2/6Te3/6Vac1/6) dispersed in electrochemically active sodium metal, termed “NST‐Na.” This new intermetallic has a vacancy‐rich thermodynamically stable face‐centered‐cubic structure and enables state‐of‐the‐art electrochemical performance in widely employed carbonate and ether electrolytes. NST‐Na achieves 100% depth‐of‐discharge (DOD) in 1mNaPF6in G2, with 15 mAh cm−2at 1 mA cm−2and Coulombic efficiency (CE) of 99.4%, for 1000 h of plating/stripping. Sodium‐metal batteries (SMBs) with NST‐Na and Na3V2(PO4)3 (NVP) or sulfur cathodes give significantly improved energy, cycling, and CE (>99%). An anode‐free battery with NST collector and NVP obtains 0.23% capacity decay per cycle. Imaging and tomography using conventional and cryogenic microscopy (Cryo‐EM) indicate that the sodium metal fills the open space inside the self‐supporting sodiophilic NST skeleton, resulting in dense (pore‐free and solid electrolyte interphase (SEI)‐free) metal deposits with flat surfaces. The baseline Na deposit consists of filament‐like dendrites and “dead metal”, intermixed with pores and SEI. Density functional theory calculations show that the uniqueness of NST lies in the thermodynamic stability of the Na atoms (rather than clusters) on its surface that leads to planar wetting, and in its own stability that prevents decomposition during cycling.

     
    more » « less
  5. Abstract

    Rechargeable alkali metal anodes hold the promise to significantly increase the energy density of current battery technologies. But they are plagued by dendritic growths and solid‐electrolyte interphase (SEI) layers that undermine the battery safety and cycle life. Here, a non‐porous ingot‐type sodium (Na) metal growth with self‐modulated shiny‐smooth interfaces is reported for the first time. The Na metal anode can be cycled reversibly, without forming whiskers, mosses, gas bubbles, or disconnected metal particles that are usually observed in other studies. The ideal interfacial stability confirmed in the microcapillary cells is the key to enable anode‐free Na metal full cells with a capacity retention rate of 99.93% per cycle, superior to available anode‐free Na and Li batteries using liquid electrolytes. Contradictory to the common beliefs established around alkali metal anodes, there is no repeated SEI formation on or within the sodium anode, supported by the X‐ray photoelectron spectroscopy elemental depth profile analyses, electrochemical impedance spectroscopy diagnosis, and microscopic imaging.

     
    more » « less